Назар аударыңыз. Бұл материалды сайт қолданушысы жариялаған. Егер материал сіздің авторлық құқығыңызды бұзса, осында жазыңыз. Біз ең жылдам уақытта материалды сайттан өшіреміз
Жақын арада сайт әкімшілігі сізбен хабарласады
Бонусты жинап картаңызға (kaspi Gold, Halyk bank) шығарып аласыз
Квадрат теңдеулерді шешудің тəсілдері
Дипломдар мен сертификаттарды алып үлгеріңіз!
Материалдың толық нұсқасын
жүктеп алып көруге болады
Жамбыл облысы Шу ауданы Жаңа жол ауылы Бауыржан Момышұлы атындағы орта мектебі
Орындаған: Өмірбай Айғаным Бақытқызы
Жетекшісі: Кудайбергенова Нурсулу Абдикасымовна
КВАДРАТ ТЕҢДЕУЛЕРДІ ШЕШУДІҢ ТӘСІЛДЕРІ
Білім өркениеттіліктің әрі өлшемі, әрі тетігі болып табылатындықтан кез келген мемлекеттің рухани және әлеуметтік дәрежесі білім деңгейіне байланысты бағаланады.
Жан-жақты үйлесімді, өркениетті елдің ұрпағын тәрбиелеп шығу бүгінгі мектептің алдына қойылған мақсаттардың бірі. Бұл мақсат әрбір орта мектеп мұғалімінен бүгінгі заман талабына сай оқыту әдістемесін күннен күнге жетілдіре түсуін талап етеді. Осы талаптың орындалуы орта мектеп бағдарламасындағы әрбір пәннің әр тарауының әр тақырыбын оқушы санасына жететіндей етіп оқытқанда ғана орындалады. Олай болса, оқушыларды жеке тұлға етіп тәрбиелеуде математика пәнінің де алатын орны, салмағы зор.
Бұл жұмыс алгебра курсында қарастырылатын квадрат теңдеулерге және оларды шешу жолдарының әр түрлі әдістеріне негізделініп отыр.
«Квадрат теңдеулер» мектептегі алгебра курсының маңызды тақырыптарының бірі. Көптеген табиғи үдірістер мен құбылыстар, сол сияқты мазмұнды есептердің шығарылуы квадрат теңдеулерді шешуге келіп тіреледі. Теңсіздіктерді шешу, функцияларды зерттеу (функцияның нөлдерін, экстремум нүктелерін, өсу және кему аралықтарын табу), ең үлкен және ең кіші мәндерді табу есептерін шығару және т.б. жағдайларда квадрат теңдеулерді шеше білу қажеттігі туындайды. Сондай-ақ тригонометриялық, көрсеткіштік және логарифмдік теңдеулерді, физикада және техникада, геометрия курсының есептерін алмастыру тәсілімен шешкенде квадрат теңдеулерге келтіріледі.
Зерттеу барысында мектеп оқушыларына «квадрат теңдеулерді» шешу жолдарының алты түрлі әдісімен таныстыруға мүмкіндік бар екендігін анықтадық. Атап айтқанда, олар төмендегідей болып табылады: Зерттеу барысында «квадрат теңдеулерді» шешу жолдарының 6 түрлі әдісімен таныстым. Ол тәсілдерге алда жеке – жеке тоқталамын.
2-ші дәрежелі теңдеулерді шешуді б.э.д II мыңжылдықта Ежелгі Вавилонда шығара білген. Ежелгі Греция математиктері квадрат теңдеулерді геометриялық тәсілмен шешкен; мысалы, Евклид –кесіндіні орта және шеткі қатынастарға бөлу арқылы шешкен.
Квадрат теңдеудің түбірлерінің формуласы бірнеше рет «қайтадан ашылған». Бізге жеткен деректер бойынша ең бірінші бұл формулаларды үнді математигі Брахмагупте ашқан (жуықтап 598 ж.). Орта Азия ғалымы ал-Хорезми (IX .ғ) өзінің «Китаб аль-джебр валь -мукабала» трактатында бұл формуланы екімүшенің толық квадратын геометриялық интерпретация арқылы айырып алу жолымен шешкен.
Есеп. Екі санның квадраттарының қосындысына тең санды басқа екі санның квадраттарының қосындысына тең болатындай жаз.
Диофант теңдеулердің оң бүтін және бөлшек шешулерін табуға баса назар аударады. Шешуі теріс сан болатындай теңдеуді ол мағынасыз теңдеу деп санап, бүтіндей қарастырмайды. Тек бір оң түбір табумен қанағаттанады.
Алдыңғы есепке оралайық. Бұл проблеманы шешуі мынадай есеппен түсіндіреді: Берілген сан 13 болсын, ол 2 мен 3-тің квадраттарының қосындысына тең. Бір квадраттың қабырғасының ұзындығы х+2 болсын, ал екінші квадрат қабырғасының ұзындығы 2х-тен 3-і кем, яғни 2х-3. Сонда бірінші квадраттың ауданы (х+2)² =x² +4x+4, екіншісінікі (2х-3)² =4х² -12х+9.
Екеуінің ауданың қоссақ (х² +4х+4) + (4х² -12х+9)=5х²-8х+13. Есептің шарты бойынша бұл 13-ке тең болуы керек:
5х² -8х+13=13
5х² -8х=0
х(5х-8)=0 5x-8=0
5x=8
x=
Сонымен бірінші квадраттың қабырғасы х+2= + 2= , екіншісінікі 2х-3=2* -3= -3= .
Квадраттың аудандары: ( )² =
( )² =
Бұл сандардың қосындысы + = =13 болады, яғни есепті қанағаттандырады.
Кітаптың өзінде пайдаланылған әдебиеттер көрсетілмегендіктен, әл-Хорезми қандай кітаптарды қолданылғаны белгісіз.
Кітапта кез келген квадрат теңдеуді алты негізгі түрдің біріне келтіріп, сол негізгі түрлерді шешудің алгебралық және геометриялық тәсілдері келтірілген. Қазіргі кезде қолданылатын абстрактылы шартты белгілер кітапта атымен жоқ болғандықтан, «әл-Хорезмидің» алгебрасы толығымен сөзбен сипаттау арқылы баяндалған. Гректің «Арифметикасында» немесе Браһмагуптаның еңбектерінде қолданылатын синкопациялар мүлдем қолданылмаған. Тіпті сандар арнайы таңбамен бейнеленген емес, толығымен сөздер ретінде жазылған!»Сондықтан теңдеулер сөзбен «шаршы» деп (яғни бүгіндері “x2” деп), «түбір» деп (бүгін оны “x” деп) және «сандар» деп (мысалы, «қырық екі», «жеті» деп толығымен жазып отырды) деп белгіленіп отырды. Бүгінгі күннің шартты белгілерін қолданса, теңдеудің негізгі алты түрі мыналар:
1)квадраттар тең түбірге тең (ax2 = bx)
-
квадраттар санға тең (ax2 = c)
-
түбірлер санға тең (bx = c)
-
квадраттар мен түбірлер санға тең (ax2 + bx = c)
-
квадраттар мен сандар түбірге тең (ax2 + c = bx)
-
түбірлер мен сандар квадраттарға тең (bx + c = ax2)
Әл-жәбр (араб жазуымен: ‘الجبر’) («толықтыру») амалы: теріс шаманы теңдеудің бір жағынан екінші жағына жіберіп, оң шама етіп өзгерту.
Әл-Хорезмидің мысалында (қазіргі белгілерді қолданса) “x2 = 40x – 4x2” теңдеуі «әл-жәбр» амалын қолдану арқылы мынаған өзгертіледі: “5x2 = 40x” Осы ережені қайталап қолдану арқылы есептеулерді пайда болатын теріс сандардан құтылуға болады.
Әл-мұқабала (араб жазуымен ‘المقابله’) («теңдестіру») дегеніміз – теңдеудің екі жағынан да бірдей оң шаманы алып тастау, сонда мына теңдеу: “x2 + 5 = 40x + 4x2” мына түрге келеді:
“5 = 40x + 3x2“. Осы ережені қайталап қолдану арқылы әр түрлі шамалардың (квадрат, түбір, сан сияқты) теңдеудің бір жағында тек бір рет қана кездесетіндей етіп түрлендіруге болады.
Жұмыстың келесі бөлігінде жоғарыда айтылған ережелерді іс жүзінде қолданудың практикалық мысалдары келтірілген.
Квадрат теңдеулерді шешудің тәсілдері
1-әдіс. Теңдеудің сол жақ бөлігін көбейткіштерге жіктеу
Мысал: х2+4х+3 =0 теңдеуін шешейік.
Теңдеудің сол жақ бөлігін көбейткіштерге жіктейміз:
х2+х+3х+3 =х(х+1)+3 (х+1) =(х+1)(х+3)
Демек, теңдеуді былай жазуға болады: (х+1)(х+3) =0
Көбейтінді нөлге тең болғандықтан, ең болмағанда көбейткіштердің біреуі нөлге тең болуы керек. Сондықтан теңдеулердің сол жақ бөлігіндегі х =-1 және сандары х2+4х+3=0 теңдеуінің түбірлері болып табылады.
2-әдіс. Толық квадратқа келтіру әдісі
Мысал: х2+8х-9=0 теңдеуін шешейік.
Сол жақ бөлігін толық квадратқа келтіреміз. Ол үшін х2+8х өрнегін төмендегідей жазып аламыз:
х2 + 8х=х2+2х4
Алынған өрнектің бірінші қосындысы х-тың квадраты, ал екінші қосындысы х пен 4-тің екі еселенгені. Толық квадрат алу үшін 42-ын қосу керек. Сонда х2+2х4+42=(х+4)2
Енді теңдеудің сол жағын түрлендіреміз. Берілген теңдеуге 42-ын қосып, алып тастаймыз. Сонда шығатыны: х2+8х-9=х2+2х4+42-9-4 =(х+4)2-25
Сонымен, берілген теңдеуді былайша жазуға болады: (х+4)2-25=0 , яғни (х+4)2=25.
Бұдан х+4=5, х =1 немесе х+4=-5, х = -9. Жауабы: 1;-9
3-әдіс. Квадраттық теңдеулерді формула арқылы шешу
ах2+вх+с=0, а≠0 теңдеудің екі жағын да 4а-ға көбейтеміз де, төмендегі өрнекті аламыз:
4а2х2+4ахв+4ас=0
((2ах)2+4ахв+в2)-в2+4ас=0 , (2ах+в)2=в2-4ас
2ах+в= , 2ах = -в
х = (1)
Оған келесідегідей мысалдар келтіруге болады:
1)3х2-7х+4=0 теңдеуін шешейік.
а=3, в=-7, с=4. Д=в2-4ас=(-7)2-4·4·3=49-48=1.
Д>0 болғандықтан, екі әр түрлі түбір болады: х1=1, х2=
Сонымен, дискриминант оң болғанда, яғни в2-4ас>0, ах2+вх+с=0 теңдеуінің екі түрлі түбірі болады.
2) 9х2+6х+1=0 теңдеуін шешейік.
а=9, в=6, с=1. Д=в2-4ас=62-4·9·1=0.
Д=0 болғандықтан, бір ғана түбір бар болады:
х= , х=
Сонымен, егер дискриминант нөлге тең болса, яғни в2-4ас=0, ах2+вх+с=0 теңдеуінің жалғыз түбірі бар болады: х=
3) х2+2х+3=0 теңдеуін шешейік.
а=1, в=2, с=3. Д= в2-4ас=4-4·3·1= -8.
Д<0 болғандықтан, теңдеудің нақты сандар өрісінде түбірі болмайды.
Сонымен, егер дискриминант теріс болса, яғни в2-4ас<0, онда ах2+вх+с=0 теңдеуінің түбірі болмайды.
4-әдіс. Виет теоремасын пайдаланып теңдеулерді шешу
Келтірілген түбірлері Виет теоремасын қанағаттандырады.
Ол былай беріледі: а=1 болғанда,
Бұдан келесі тұжырымдарды шығаруға болады:
а) Егер q (1) теңдеудің бос мүшесі оң болса (q 0) онда теңдеудің екі бірдей таңбалы түбірі болады. Егер р>0, онда екі түбірі де теріс болады, егер р<0, онда түбірлері оң болады.
Мысал, 1)х2-9х+20=0, х1=4, х2=5, мұнда q=20 >0, р=-9 <0;
2)х2+5х+6 =0, х1 =-2, х2 =-3, мұнда q =6 >0, р =5 >0.
б) Егер q (1) теңдеудің бос мүшесі теріс болса (q <0), онда теңдеудің екі түрлі, таңбалы екі түбірі болады, түбірдің модулі бойынша үлкені оң болады, егер р <0 болса, теріс болады, егер р >0. Мысал, 1) х2+3х-4 =0; х1 =-4, х2 =1 мұнда q =-4 <0, р=-3 >0
-
х2-7х-8 =0; х1 =8, х2 =-1 мұнда q =-8 <0, р =-7 <0
5-әдіс. Теңдеуді «асыра лақтыру» әдісімен шешу
ах2+вх+с =0 , а ≠0 квадрат теңдеуін қарастырамыз. Теңдеудің екі жағын да а-ға көбейтіп, мынаны аламыз: а2х2+авх+ас=0. ах =у деп белгілесек, х = . Олай болса у2+ву+ас =0 теңдеуіне келеміз. Бұл бастапқы теңдеумен тең. Теңдеудің түбірлерін у1, у2 –ні Виет теоремасы арқылы табамыз. Соңында х1 = , х2 = -ны аламыз. Бұл жағдайда а коэффициентін бос мүшеге көбейтеді. Сондықтан да бұл әдісті «асыра лақтыру» әдісі деп атайды. Бұл әдісті көбінесе Виет теоремасын пайдаланып түбірді оңай табуда және дискриминант дәл квадрат болғанда қолданады.
Мысал: 2х2-9х+9=0 теңдеуін шешейік.
Шешуі: 2 коэффициенті теңдеудің бос мүшесіне асыра лақтырамыз, нәтижесінде
у2-9у+18=0 теңдеуін аламыз. Виет теоремасы бойынша
6-әдіс. Квадрат теңдеулердің коэффициенттерінің қасиеттерін қолдану
ах2+вх+с=0, а≠0 квадрат теңдеуі берілген.
Егер а+в+с=0 (яғни коэффициенттер қосындысы 0-ге тең) болса, онда х1=1, х2=
Мысал: 7+2-9=0 қосындысы 0-ге тең. Осы үш сан үшін квадрат теңдеу құрастырып, оны шешейік:
Қорытынды
Бұл шығармашылық жұмыста қарастырылған 6 әдіс те «Квадрат теңдеулер» тақырыбын терең меңгеруіне жол ашады. Сонымен қоса, квадрат теңдеулерді шешудің барлық алты әдісі де қолданыс тапқанда оқушылардың пәнге деген қызығушылығы мен логикалық ойлау қабілеті артады.
Квадрат теңдеулерді теңсіздіктерді шешкенде, тригонометрия және иррационал теңдеулерде кең көлемде қолданылады.
Квадрат теңдеулер физика және геометрия пәндеріндегі кейбір есептерді шешуде бірден бір қолайлы тәсіл болып табылады. Сол сияқты алгебра пәнінде де кейбір тригонометриялық теңдеулерді және теңсіздіктерді шешуде де оқушы үшін ыңғайлы тәсілдің бірі болып саналады. Сондықтан да әрбір оқушы үшін квадрат теңдеуді басқа пәндердегі есептерді шешуде қолдана білуі, математиканың ғылымдар патшасы ретінде білгеніміз. Ақыл-ойды дамытатын математика. Сондықтан да кез-келген есептердің шешу тәсілдерін біліп қана қоймай, оларды терең меңгеріп, біздің ой-санамыздың дамуына үлкен мүмкіндік береді.
Қолданылған әдебиеттер:
1. Әбілқасымова.А.Е. Бекбаев.И.Б. Абдиев.А.А. Жұмағұлова З.Ә. Алгебра 8 сынып.Алматы Мектеп 2008ж
-
Математика, информатика, физика журналы . №5, 6 2003ж.
-
Брадис В.М. Төрт таңбалы математикалық таблицалар – М.: Просвещение, 1990
-
Ш. Бекбаулиева, Қ.И. Қаңлыбаев, Н.Н. Забежанская, М.Б. Меңдіғалиева, Алматы «Ана тілі» 1991
-
Математика журналы №4, 2007 ж.
-
Алимов Ш.А., Ильин В.А. и др. Алгебра, 6-8. Пробный учебник для 6-8 классовой средней школы. - М., Просвещение, 1981.