Материалдар / Ашық сабақ Алгебра 9 сынып 3 тоқсан

Ашық сабақ Алгебра 9 сынып 3 тоқсан

Материал туралы қысқаша түсінік
Келтіру формуласы. 9 сынып Алгебра 3 тоқсан
Материал тегін
Бұл бетте материалдың қысқаша нұсқасы ұсынылған. Материалдың толық нұсқасын жүктеп алып, көруге болады
img_page_1
Материал жариялап, аттестацияға 100% жарамды сертификатты тегін алыңыз!
Ustaz tilegi журналы министірліктің тізіміне енген. Qr коды мен тіркеу номері беріледі. Материал жариялаған соң сертификат тегін бірден беріледі.
Оқу-ағарту министірлігінің ресми жауабы
Сайтқа 5 материал жариялап, тегін АЛҒЫС ХАТ алыңыз!
Қазақстан Республикасының білім беру жүйесін дамытуға қосқан жеке үлесі үшін және де Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық материалыңызбен бөлісіп, белсенді болғаныңыз үшін алғыс білдіреміз!
Сайтқа 25 материал жариялап, тегін ҚҰРМЕТ ГРОМАТАСЫН алыңыз!
Тәуелсіз Қазақстанның білім беру жүйесін дамытуға және білім беру сапасын арттыру мақсатында Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жариялағаны үшін марапатталасыз!
Ресми байқаулар тізімі
Республикалық байқауларға қатысып жарамды дипломдар алып санатыңызды көтеріңіз!
Материалдың қысқаша түсінігі

1 слайд

1 слайд

Оқушыларға сүйір бұрыштың тригонометриялық функциясының әрбір бұрышындағы синустыың, косинустың, тангенстің, котангенстің кел

2 слайд
Оқушыларға сүйір бұрыштың тригонометриялық функциясының әрбір бұрышындағы синустыың, косинустың, тангенстің, котангенстің келтіру формулаларымен таныстыру, осы формулаларды тригонометриялық өрнектерді түрлендіруде және есептерді шығару кезінде қолдануды үйрету;

2 слайд

Оқушыларға сүйір бұрыштың тригонометриялық функциясының әрбір бұрышындағы синустыың, косинустың, тангенстің, котангенстің келтіру формулаларымен таныстыру, осы формулаларды тригонометриялық өрнектерді түрлендіруде және есептерді шығару кезінде қолдануды үйрету;

Есте са қта!!! - Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π ± α (180 ± α ), 2 π ± α (360 ± α ) тү

3 слайд
Есте са қта!!! - Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π ± α (180 ± α ), 2 π ± α (360 ± α ) түрінде болса, онда оның аты өзгермейді. - Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π /2 ± α (90 ± α ), 3 π /2 ± α (270 ± α ) түрінде болса, онда синус косинусқа, косинус синусқа, тангенс котангенске, котангенс тангенске өзгереді; - Келтіру формуласының оң жағының таңбасы сәйкес ширектегі келтірілген функцияның таңбасымен бірдей жазылады.

3 слайд

Есте са қта!!! - Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π ± α (180 ± α ), 2 π ± α (360 ± α ) түрінде болса, онда оның аты өзгермейді. - Егер келтірілген тригонометриялық функцияның аргументі (бұрышы) π /2 ± α (90 ± α ), 3 π /2 ± α (270 ± α ) түрінде болса, онда синус косинусқа, косинус синусқа, тангенс котангенске, котангенс тангенске өзгереді; - Келтіру формуласының оң жағының таңбасы сәйкес ширектегі келтірілген функцияның таңбасымен бірдей жазылады.

      sin 2 cos; cos 2 sin                 Бұдан шығады.       sin 2

4 слайд
      sin 2 cos; cos 2 sin                 Бұдан шығады.       sin 2 cos; cos 2 sin                           cos cos; sin sin                 cos cos; sin sin            sin 2 3 cos; cos 2 3 sin                        sin 2 3 cos; cos 2 3 sin                             cos 2 cos; sin 2 sin               cos 2 cos; sin 2 sin     

4 слайд

      sin 2 cos; cos 2 sin                 Бұдан шығады.       sin 2 cos; cos 2 sin                           cos cos; sin sin                 cos cos; sin sin            sin 2 3 cos; cos 2 3 sin                        sin 2 3 cos; cos 2 3 sin                             cos 2 cos; sin 2 sin               cos 2 cos; sin 2 sin     

Жоғарыдағы формулаларды пайдаланып, tg α ,ctg α - н ің келтіру формуласын шығаруға болады.      tg ctg ctg tg   

5 слайд
Жоғарыдағы формулаларды пайдаланып, tg α ,ctg α - н ің келтіру формуласын шығаруға болады.      tg ctg ctg tg                   2 ; 2           сtg ctg tg tg       ;       tg ctg ctg tg                   2 3 ; 2 3           сtg ctg tg tg       2 ; 2

5 слайд

Жоғарыдағы формулаларды пайдаланып, tg α ,ctg α - н ің келтіру формуласын шығаруға болады.      tg ctg ctg tg                   2 ; 2           сtg ctg tg tg       ;       tg ctg ctg tg                   2 3 ; 2 3           сtg ctg tg tg       2 ; 2

х sin x Cos α cos α -sin α sin α -cos α -cos α sin α -sin α cosx -sin α sin α -cos α -cos α sin α -sin α cos α cos α tg x -ctg

6 слайд
х sin x Cos α cos α -sin α sin α -cos α -cos α sin α -sin α cosx -sin α sin α -cos α -cos α sin α -sin α cos α cos α tg x -ctg α ctg α tg α -tg α -ctg α ctg α tg α -tg α ctg x -tg α tg α ctg α -ctg α -tg α tg α ctg α -ctg α       0 90 2        0 90 2        0 180        0 180        0 270 2 3        0 270 2 3        0 360 2        0 360 2

6 слайд

х sin x Cos α cos α -sin α sin α -cos α -cos α sin α -sin α cosx -sin α sin α -cos α -cos α sin α -sin α cos α cos α tg x -ctg α ctg α tg α -tg α -ctg α ctg α tg α -tg α ctg x -tg α tg α ctg α -ctg α -tg α tg α ctg α -ctg α       0 90 2        0 90 2        0 180        0 180        0 270 2 3        0 270 2 3        0 360 2        0 360 2

ЕРЕЖЕ «жұмыстық» бұрыштар арқылы келтіру: «Жазыңқы» бұрыштар арқылы келтіру: Функцияның аты Ауысады Ауыспайды Та

7 слайд
ЕРЕЖЕ «жұмыстық» бұрыштар арқылы келтіру: «Жазыңқы» бұрыштар арқылы келтіру: Функцияның аты Ауысады Ауыспайды Таңбасы оң жағының таңбасы сәйкес ширектегі келтірілген функцияның таңбасымен бірдей жазылады...; 2 5 ; 2 3 ; 2    ... ; 3 ; 2 ;    2 0 У 2 3   2 Х

7 слайд

ЕРЕЖЕ «жұмыстық» бұрыштар арқылы келтіру: «Жазыңқы» бұрыштар арқылы келтіру: Функцияның аты Ауысады Ауыспайды Таңбасы оң жағының таңбасы сәйкес ширектегі келтірілген функцияның таңбасымен бірдей жазылады...; 2 5 ; 2 3 ; 2    ... ; 3 ; 2 ;    2 0 У 2 3   2 Х

1. Сәйкестендіру тесті(өрнекті ықшамда) tg( π - α ) cos α ctg( π + α ) tg α sin(360- α ) - tg α cos(360- α ) ctg α ctg(360- α

8 слайд
1. Сәйкестендіру тесті(өрнекті ықшамда) tg( π - α ) cos α ctg( π + α ) tg α sin(360- α ) - tg α cos(360- α ) ctg α ctg(360- α ) - sin α tg(360+ α ) - ctg α

8 слайд

1. Сәйкестендіру тесті(өрнекті ықшамда) tg( π - α ) cos α ctg( π + α ) tg α sin(360- α ) - tg α cos(360- α ) ctg α ctg(360- α ) - sin α tg(360+ α ) - ctg α

9 слайд

9 слайд

10 слайд

10 слайд

11 слайд

11 слайд

1. 2 .         0 0 90 180 ctg tg          0 0 2 360 cos 1 180 sin               

12 слайд
1. 2 .         0 0 90 180 ctg tg          0 0 2 360 cos 1 180 sin                                                                                                     2 sin 2 cos 2 2 3 . 4 90 360 360 sin 270 sin. 3 2 3 cos 2 sin. 2 360 270 180 cos 90 sin. 1 2 2 0 3 0 3 0 2 0 2 0 0 0 0 tg tg tg ctg ctg tg ctg tg

12 слайд

1. 2 .         0 0 90 180 ctg tg          0 0 2 360 cos 1 180 sin                                                                                                     2 sin 2 cos 2 2 3 . 4 90 360 360 sin 270 sin. 3 2 3 cos 2 sin. 2 360 270 180 cos 90 sin. 1 2 2 0 3 0 3 0 2 0 2 0 0 0 0 tg tg tg ctg ctg tg ctg tg

1. 2 . 1   cos  1 . 4 1. 3 cos 2. 2 2 . 1     ctg         0 0 0 0 0 0 0 0 0 0 0 0 15 15 90 15 15

13 слайд
1. 2 . 1   cos  1 . 4 1. 3 cos 2. 2 2 . 1     ctg         0 0 0 0 0 0 0 0 0 0 0 0 15 15 90 15 15 90 15 sin 15 90 cos 15 cos 15 90 sin) tg ctg ctg tg а                 0 0 0 0 0 0 0 0 0 0 0 0 15 30 180 15 30 180 15 cos 30 180 cos 15 sin 30 180 sin) ctg ctg tg tg а                    0 0 0 0 0 0 0 0 0 0 0 0 20 20 180 20 20 180 20 cos 20 180 cos 20 sin 20 180 sin) ctg ctg tg tg а          

13 слайд

1. 2 . 1   cos  1 . 4 1. 3 cos 2. 2 2 . 1     ctg         0 0 0 0 0 0 0 0 0 0 0 0 15 15 90 15 15 90 15 sin 15 90 cos 15 cos 15 90 sin) tg ctg ctg tg а                 0 0 0 0 0 0 0 0 0 0 0 0 15 30 180 15 30 180 15 cos 30 180 cos 15 sin 30 180 sin) ctg ctg tg tg а                    0 0 0 0 0 0 0 0 0 0 0 0 20 20 180 20 20 180 20 cos 20 180 cos 20 sin 20 180 sin) ctg ctg tg tg а          

14 слайд

14 слайд

15 слайд

15 слайд

Министірлікпен келісілген курстар тізімі