2024-2025 оқу жылына арналған
Қысқа мерзімді сабақ жоспарларын жүктеп алғыңыз келеді ме?
ҚР Білім және Ғылым министірлігінің стандартымен жасалған
Материалдар / Негізгі тригонометриялық тепе - теңдіктер

Негізгі тригонометриялық тепе - теңдіктер

Материал туралы қысқаша түсінік
Дайын презентация: анықтама + формула + есептер
Бұл бетте материалдың қысқаша нұсқасы ұсынылған. Материалдың толық нұсқасын жүктеп алып, көруге болады
img_page_1
24 Қараша 2024
113
Материал жариялап, аттестацияға 100% жарамды сертификатты тегін алыңыз!
Ustaz tilegi журналы министірліктің тізіміне енген. Qr коды мен тіркеу номері беріледі. Материал жариялаған соң сертификат тегін бірден беріледі.
Оқу-ағарту министірлігінің ресми жауабы
Сайтқа 5 материал жариялап, тегін АЛҒЫС ХАТ алыңыз!
Қазақстан Республикасының білім беру жүйесін дамытуға қосқан жеке үлесі үшін және де Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық материалыңызбен бөлісіп, белсенді болғаныңыз үшін алғыс білдіреміз!
Сайтқа 25 материал жариялап, тегін ҚҰРМЕТ ГРОМАТАСЫН алыңыз!
Тәуелсіз Қазақстанның білім беру жүйесін дамытуға және білім беру сапасын арттыру мақсатында Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жариялағаны үшін марапатталасыз!
Ресми байқаулар тізімі
Республикалық байқауларға қатысып жарамды дипломдар алып санатыңызды көтеріңіз!
Материалдың қысқаша түсінігі

1 слайд

1 слайд

2 слайд

2 слайд

А С В b ca c b АВ ВС cos Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына іргелес жатқан катеттің гипотенузаға қатынасы осы б

3 слайд
А С В b ca c b АВ ВС cos Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына іргелес жатқан катеттің гипотенузаға қатынасы осы бұрыштың косинусы деп аталады c b cos 

3 слайд

А С В b ca c b АВ ВС cos Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына іргелес жатқан катеттің гипотенузаға қатынасы осы бұрыштың косинусы деп аталады c b cos 

А С Вb c a c a АВ АС sin Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына қарсы жатқан катеттің гипотенузаға қатынасы осы бұр

4 слайд
А С Вb c a c a АВ АС sin Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына қарсы жатқан катеттің гипотенузаға қатынасы осы бұрыштың синусы деп аталады.  c a sin

4 слайд

А С Вb c a c a АВ АС sin Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына қарсы жатқан катеттің гипотенузаға қатынасы осы бұрыштың синусы деп аталады.  c a sin

А С Вb c a b a ВС АС tg  Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына қарсы жатқан катеттің іргелес жатқан катетке қатына

5 слайд
А С Вb c a b a ВС АС tg  Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына қарсы жатқан катеттің іргелес жатқан катетке қатынасы сол бұрыштың тангенсі деп аталады. b a tg 

5 слайд

А С Вb c a b a ВС АС tg  Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына қарсы жатқан катеттің іргелес жатқан катетке қатынасы сол бұрыштың тангенсі деп аталады. b a tg 

А С Вb c a a b АС ВС ctg  Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына іргелес жатқан катеттің қарсы жатқан катетке қатын

6 слайд
А С Вb c a a b АС ВС ctg  Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына іргелес жатқан катеттің қарсы жатқан катетке қатынасы сол бұрыштың котангенсі деп аталады. a b ctg 

6 слайд

А С Вb c a a b АС ВС ctg  Анықтама: Тікбұрышты үшбұрыштың сүйір бұрышына іргелес жатқан катеттің қарсы жатқан катетке қатынасы сол бұрыштың котангенсі деп аталады. a b ctg 

7 слайд

7 слайд

8 слайд

8 слайд

9 слайд

9 слайд

Министірлікпен келісілген курстар тізімі