Материалдар / Баяндама: Жарық қасиеттері 8 сынып
2023-2024 оқу жылына арналған

қысқа мерзімді сабақ жоспарларын

жүктеп алғыңыз келеді ма?
ҚР Білім және Ғылым министірлігінің стандартымен 2022-2023 оқу жылына арналған 472-бұйрыққа сай жасалған

Баяндама: Жарық қасиеттері 8 сынып

Материал туралы қысқаша түсінік
Баяндамада жарық қасиеттері жайлы мағлұмат толық айтылады.
Авторы:
Автор материалды ақылы түрде жариялады.
Сатылымнан түскен қаражат авторға автоматты түрде аударылады. Толығырақ
01 Қараша 2020
437
0 рет жүктелген
Бүгін алсаңыз 25% жеңілдік
беріледі
770 тг 578 тг
Тегін турнир Мұғалімдер мен Тәрбиешілерге
Дипломдар мен сертификаттарды алып үлгеріңіз!
Бұл бетте материалдың қысқаша нұсқасы ұсынылған. Материалдың толық нұсқасын жүктеп алып, көруге болады
logo

Материалдың толық нұсқасын
жүктеп алып көруге болады

Жарық қасиеттері


Жарық деген не? Бұл сұраққа ғалымдар көне заманнан жауап іздеп келді. XIX ғасырға дейін жарық тез қозғалатын бөлшектер- корпускулярлар ағыны ретінде қарастырылып келді. Бұл көзқарасты И.Ньютон да ұстанды. Бірақ, XIX ғасырда жарықтың толқындық қасиеттері айқын білінетін оның интерференциясы, дифракциясы және т.б. құбылыстар ашылды. Юнг пен Френель жұмыстарының нәтижесі екі бәсекелес корпускулалық және толқындық теорияның біреуі, яғни толқындық теорияның жеңіп шығуына әкелді. Бұдан соң Максвелл еңбектерінің қорытындысы жарықтың электромагниттік толқын екенін түпкілікті дәлелдеп берді. Бірақ XIX ғасырдың аяғы мен XX ғасырдың басында ашылған құбылыстар жарықтың фотондар ағыны ретінде таралатынын көрсетті. Сонымен, жарық деген не? Толқын ба әлде бөлшек пе деген сұрақ қайта туындады. Физик ғалымдар бірте-бірте сұрақты бұлай қоюдың өзі дұрыс емес екенін түсінді. Жарықта әрі үздіксіз электромагниттік толкындардың, әрі дискретті фотондардың бөлшектік қасиеттері бар.

Абсолют қара дененің сәулеленуін және жарық қысымының флуктуацияларын зерттей отырып, жарық қасиеттерінің екіжақтылығын алғаш түсінген Эйнштейн болды. Ол осы айтылған ауытқуларды есептейтін формуланы қорытып шығарды. Бұл формула екі қосылғыштан тұрады, бірінші қосылғыш— "кванттық мүше" жарықты фотондардың ағыны ретінде сипаттаса, екінші қосылғыш- "толкындық мүше" таралатын электромагниттік толқындағы флуктуацияларды сипаттайды. Жиілік жоғары болса, "кванттық мүшенің", төменгі жиіліктерде "толқындық мүшенің" үлесі басым болады. Белгілі оптикалық құбылыстардың заңдылықтарын зерделей отырып, толқын ұзындығы азайған сайын (немесе, жиілік артқан сайын) жарықтың кванттық қасиеттері айқын біліне бастайтынына (және керісінше) көз жеткізуге болады. Егер жарықтың таралу процесіне статистикалық тәсіл тұрғысынан қарасақ, оның толқынды қорпускулалық екіжақтылық қасиеттері түсінікті бола бастайды. Кванттық көзқарас бойынша жарық- энергия мен импульс және массаға ие фотондардың ағыны. Жарық қандай да бір оптикалық жүйе арқылы (мысалы, дифракциялық тордан) өткенде, фотондар онымен әсерлесіп, кеңістікте қайта орын алмастырып, орналасады. Соның нәтижесінде, мысалы, дифракциялың көрініс бақыланады. Экранның берілген нүктесінің Е жарықталынуы уақыт бірлігінде осы нүктеге түскен барлық фотондар энергияларының қосындысына, олай болса n0 фотондар санына пропорционал. Сонымен, Е және n0 шамалары экранның берілген нүктесіне фотондардың түсу ықтималдылығына пропорционал. Толқындық көзқарас бойынша J жарықталыну интенсивтікке, ал оның өзі амплитуданың квадратына пропорционал, яғни Е ~ А2. Осы екі көзқарасты салыстыра отырып, мынадай қорытындыға келеміз: кеңістіктің қандай да бір нүктесіндегі жарық толқыны амплитудасының квадраты осы нүктеге фотондардың келіп түсу ықтималдылығын анықтайды. Сонымен, жарықтың корпускулалық және толқындық қасиеттері бірін-бірі жоққа шығармайды, керісінше олар бір-бірін толықтырады. Сәулеленудің корпускулалық касиеттері оның энергиясы, импульсі және массасы үзікті бөлшектер- фотондарда жинақталуымен байланысты болса, толқындық қасиеттері осы фотондардың кеңістікте орналасуының статистикалық заңдылықтарымен байланысты. Тәжірибелер толқындық қасиет тек фотондардың ағынына ғана емес, жеке фотонға да тән екенін көрсетті. Фотон дифракциялық тордан өткен соң экранның қай нүктесіне келіп түсетінін дәл анықтап айту мүмкін емес, тек әр фотонның экранның қандай да бір нүктесіне түсу ықтималдығын ғана есептеуге болады. Осы тақырыпта айтылғандардан фотондар Ньютонның корпускулаларынан мүлде өзгеше бөлшектер екенін көреміз. Ньютон корпускулалары кәдімгі классикалық бөлшектердің қасиетіне ие болса, фотондар әрі бөлшек, әрі толқындық қасиетке ие.

Лазер (ағылш. laser, ағылш. light amplification by stimulated emission of radiation қысқашасы) — лазер.

  1. Лазер сәулесін беретін аспап. Оның түрлері: газ лазері, жартылай өткізгіш лазері, қатты дене лазері және сұйық зат лазері. Стоматология тәжірибесінде баяу ағынды гелий- неондық лазер қолданылады. Қанжел (пародонт) ауруларын, зақымданған тканьдерді емдеуде, организмнің әр түрлі ауруларға бейімділігін (сенсебилизация) кеміту, иммундық қасиеттерін күшейту т. б. клиникалық жұмыстарда жақсы нәтиже беріп келеді. Ауыз қуысында болатын стоматиттерді (ауыздың уылуы) ерін мен тіл жараларын, глоссалгияны (тоқтаусыз ауыратын тіл кеселі), глосситті (тіл кабынуы) лазер сәулесімен емдеудің нәтижесі жақсы. Бұл сәулені сондай-ақ жақ сүйектері сынғанда, бетке пластикалық операциялар жасағанда қолданады.

Лазерлік көрсеткіші бар Револьвер

  1. Кванттық генераторлармен оптикалық диапазондағы күшейткіштер. Лазер атауы ағылшынның "Light Amplification by Stimulated Emission of Radiation" сөзін қысқартқандағы LASER атауынан шыққан ("индуктивті сәулеленудің комегімен жарықты күшейту"). Лазердің негізгі бөлшектері: белсенді зат, резонатор, козғаушы көз бен жабдықтаушы көз. Лазер жарық толкындары диапозоныңда жұмыс істейді әрі кванттық-механикалық қондырғының бір түрі болып табылады. Оның жұмысы белсенді заттың козғаушы микробөлшектерін квант жарығына индуцивті жіберуге негізделген. Лазер өте жұқа шашырамайтын (шоғырланған), энергиясының тығыздығы жоғары жарық сәулесін алуға мүмкіндік береді. Бұл сәуле байланыс құралы (оның ішінде аса алыс ғарыштық), локация, навигация және талқандайтын қару ретінде де қолданылуы мүмкін. Шетелдік мамандар Лазердің көмегімен әр түрлі соғыс міндеттерін орындауға: мысалы, жер үсті, әуе, су асты, су үсті нысаналарының координаттарын анықтауға, бірнеше корреспондент арасылда көп каналды байланыс орнатуға, қарсыластың тірі күштерінің көзін шағылыстырып, құртуға, басқарылатын ракеталарды жер үсті және әуе нысаналарына бағыттауға болады деп есептейді. Соңғы уақытта АҚШ-та көптеген зерттеулер радиациялық карулар (ракетаға қарсы "өлім сәулесі") ойлап табуға, оптикалық кванттық генераторлар жасауға бағытталған. Инфрақызыл диапазондағы Л. жасалуда: ол 1 млн. градус температураға сәйкес келетін сөулелену туғызуы керек. Мұндай құрал қарсыластың 60-320 KM қашықтықтағы ғарыштық снарядын балқытып жіберуге тиіс. Сондай-ақ жеке кару ретінде қолдану әрекеті де АҚШ-та бақылаушыны соқыр етуге арналған оптикалық кванттық генераторы бар винтовка жасалуда.

Спектроскопия(лат spectrum– бейне, көрсету және грек. skopeo– көремін)– электрмагниттік толқындар спектрін зерттеуге арналған физиканың саласы. Толқын ұзындығы бойынша Спектроскопия радиоспектроскопия, инфрақызыл, оптика, ультракүлгін; рентген, гамма Спектроскопия; зерттелетін жүйелер:Спектроскопия.

Спектроскопия– физиканың электрмагниттік сәуле шығару спектрлерін зерттейтін саласы. Спектроскопия әдістері бойынша атом, молекула энергия деңгейлерін және олардан құралған макроскопиялық жүйелерді, энергия деңгейлерінің арасындағы кванттық ауысуларды анықтайды. Спектроскопияның негізгі қолданылатын маңызды салалары– спектрлік талдау және астрофизика. Спектроскопияның негізгі даму кезеңдері– 19 ғасырдың басында Күн спектріндегі жұтылу сызықтарын ашу мен зерттеу, шығару және жұтылу спектрлеріндегі байланыс орнату (Г.Р.Кирхгоф,1859) мен оның негізінде спектрлік талдаудың пайда болуымен басталды. Спектроскопия көмегімен ең алғаш астрономиялық нысандардың– Күн, жұлдыз, тұмандықтардың құрамы анықталды. 19 ғасырдың 2-жартысы – 20 ғасырдың бас кезінде спектроскопия эмпириялық ғылым ретінде дами берді, орасан зор тәжірибелік материал жинақталды, спектрлік сызықтар мен жолақтардың орналасу заңдылықтары ашылды. 1913 жылы Н.Бор бұл заңдылықтарды кванттық теория негізінде түсіндірді. Спектроскопия әр түрлі белгілеріне байланысты жеке салаларға бөлінеді. Электромагниттік толқындардың ұзындық диапазоны бойынша спектроскопия: радиоспектроскопия, субмиллиметрлік, қысқа толқынды, оптикалық, ультракүлгін, рентгендік болып бөлінеді.

Материал жариялап тегін сертификат алыңыз!
Бұл сертификат «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жарияланғанын растайды. Журнал Қазақстан Республикасы Ақпарат және Қоғамдық даму министрлігінің №KZ09VPY00029937 куәлігін алған. Сондықтан аттестацияға жарамды
Ресми байқаулар тізімі
Республикалық байқауларға қатысып жарамды дипломдар алып санатыңызды көтеріңіз!