Материалдар / Функция графигінің дөңестігі мен ойыстығы. Иілу нүктелері

Функция графигінің дөңестігі мен ойыстығы. Иілу нүктелері

Материал туралы қысқаша түсінік
Функция графигінің дөңестігі мен ойыстығы мен иілу нүктелері табу. Бұл материал студенттер мен жас мамандарға көмек.
Авторы:
03 Желтоқсан 2021
774
0 рет жүктелген
770 ₸
Бүгін алсаңыз
+39 бонус
беріледі
Бұл не?
Бүгін алсаңыз +39 бонус беріледі Бұл не?
Бұл бетте материалдың қысқаша нұсқасы ұсынылған. Материалдың толық нұсқасын жүктеп алып, көруге болады
Сабақ тақырыбы: Функция графигінің дөңестігі мен ойыстығы. Иілу
нүктелері
Сабақ мақсаты: Функция графигінің дөңестігі мен ойыстығы, иілу нүктелері
туралы ұғымды игерту.
Оқу нәтижесі: Функция графигінің дөңестігі мен ойыстығын білу;
Дөңестік пен ойыстық араларын, иілу нүктелерін таба алу.
Бағалау критерийлері: Функция графигінің дөңестігі мен ойыстығын біледі;
Дөңестік пен ойыстық араларын, иілу нүктелерін таба алады.
Алдынғы сабағымызда функцияның сындық нүктесін және экстремум
нүктелерімен таныстық, оларды табуды игердік, ал бүгін функция графигінің
дөңестігі мен ойыстығын, иілу нүктелерін табуды үйренесіздер.
Анықтама. Егер дифференциалданатын функцияның графигі Х интервалының
кез келген нүктесіне жүргізілген жанамадан төмен орналасса, онда функция Х
интервалында төменге қарай дөңестелген деп аталады.
Анықтама. Егер дифференциалданатын функцияның графигі Х интервалының
кез келген нүктесіне жүргізілген жанамадан төмен болмаса, онда функция Х
интервалында жоғары қарай дөңестелген деп аталады.
Көп жағдайда жоғары қарай дөңестелген функцияны дөңес функция деп, ал
төменге қарай дөңестелген функцияны ойыс функция деп атайды.
Теорема. (графиктің дөңестігі туралы) [a ;b] кесіндісінде y = f(x) функциясы
беріліп, кесіндінің ішкі жағында функция екі рет дифференциалданса
''
''
f ( x )> 0 ( f ( x ) <0 ) болса, онда y = f(x) функциясың графигінің дөңестігі осы
кесіндіде төмен (жоғары) қарайды.
Мысал. 1. у=х 3−6 х 2+ 12 х +4 функциясын дөңестікке зерттейік.
Шешуі. Бірінші ретті туындысы у '=3 х 2−12 x+ 12 , ал екінші ретті туындысы
у ' '=6 x−12 –ге тең. Бұдан x >2 жағдайында у ' '>0 және x <2 жағдайында у ' ' <0.
Демек, (−∞;2 ) аралығында функция графигінің дөңестігі жоғары, ( 2 ;+∞ )
аралығында функция графигінің дөңестігі
төмен қарайды.
Жауабы: (−∞;2 ) аралығында функция графигінің дөңестігі жоғары, ( 2 ;+∞ )
аралығында функция графигінің дөңестігі төмен қарайды.
Анықтама. Егер М нүктесінің кіші аймағында қисық осы нүктеде жүргізілген
жанаманың екі жағында орналасса , онда М нүктесі иілу нүтесі деп аталады.

Теорема. Егер х 0 нүктесінде екінші туынды үзіліссіз және нөлге тең болса, онда
М ( x 0 ; f ( x 0) ) нүктесі иілу нүктесі болмайды.
Теорема.( иілудің жеткілікті белгісі) y = f(x) функциясы х 0 нүктесінің аймағы мен
осы нүктенің өзінде екінші туындысы бар болса және х 0 нүктесінде
дифференциалданып, екінші туынды х 0 нүктесінен өткенде таңбасын ауыстырса,
онда ол нүкте иілу нүктесі болады.
Функция графигінің иілу нүктесін табу алгоритмі:
1) Екінші туындыны табу, яғни у ' ' −¿ ті табу;
2) у ' ' =0 теңдігі орындалатындай немесе үзілісті болатындай нүктелерді табу
немесе ондай нүктелер болмайтынын көрсету;
3) Табылған нүктелер арқылы функцияның анықталу облысын аралықтарға
бөліп, әр аралықтағы екінші туындының таңбасын анықтау керек. Егер
дөңестіктің әртүрлі ( төмен және жоғары) орналасуларының аралықтарын
бөлсе, онда осы нүктенің абсциссасы функцияның иілу нүктесі болады;
4) Иілу нүктесіндегі мәнін есептеу.
Мысал.2. у=х 3 функциясының иілу нүктесін табайық
Шешуі. у=х 3 функция графигін қарастырайық. Графиг3 т-менде суретте
берілген. График бойынша функция x>0 жағдайында ойыс және x<0
жағдайда дөңес. Демек, x = 0 нүктесі у=х 3 функциясының иілу нүктесі болады.
Енді осы тұжырымды алгоритм бойынша анықтайық. у ' ' =6 х ; у ' ' =0
немесе x = 0;
x > 0 жағдайында 6x > 0 және x< 0 жағдайында 6x< 0, x>0 жағдайында у ' ' > 0 ,
x < 0 жағдайында у ' ' < 0. Олай болса, у=х 3 функциясы x > 0 болғанда ойыс
және x < 0 болғанда дөңес. Сондықтан
x = 0 нүктесі у=х 3 функциясының иілу нүктесі болады.

Үй тапсырмасы.

№49.3 Төменде берілген графиктен функцияның графигінің дөңестік және
ойыстық аралықтарын табыңдар.

№49.5 у=х 3 +5 х−3 функция графигінің жоғары және төмен бағытталған
дөңестік аралықтарын жазыңдар.
№49.8 Функцияның иілу нүктелерін табыңдар
у=х 6 −8 х3 +24 х 2
Материал жариялап, аттестацияға 100% жарамды сертификатты тегін алыңыз!
Ustaz tilegi журналы министірліктің тізіміне енген. Qr коды мен тіркеу номері беріледі. Материал жариялаған соң сертификат тегін бірден беріледі.
Оқу-ағарту министірлігінің ресми жауабы
Сайтқа 5 материал жариялап, тегін АЛҒЫС ХАТ алыңыз!
Қазақстан Республикасының білім беру жүйесін дамытуға қосқан жеке үлесі үшін және де Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық материалыңызбен бөлісіп, белсенді болғаныңыз үшін алғыс білдіреміз!
Сайтқа 25 материал жариялап, тегін ҚҰРМЕТ ГРОМАТАСЫН алыңыз!
Тәуелсіз Қазақстанның білім беру жүйесін дамытуға және білім беру сапасын арттыру мақсатында Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жариялағаны үшін марапатталасыз!
Ресми байқаулар тізімі
Республикалық байқауларға қатысып жарамды дипломдар алып санатыңызды көтеріңіз!
Министірлікпен келісілген курстар тізімі