Мәншүк Мәметова
атындағы шағын орталықты
орта мектебінің
математика пәнінің мұғалімі
Дүйсембиева Бағдат
Әлішқызы
ҰБТ есептерін шығару
жолдары
1.Дұрыс үшбұрышқа
қабырғасы 6-ға тең квадрат іштей сызылған. Үшбұрыштың қабырғасын
табыңыз.
Берілгені: NK=6
т/к:АС
шешуі:
tg60= ,
AK=
Жауабы:
6+4
2.Тік төртбұрыштың
қабырғалары 30см және 20см. Егер кіші қабырғасын 25% азайтып,үлкен
қабырғасын 20% үлкейткенде тік төртбұрыштың ауданы неше процентк
өзгереді?
Берілгені:
а=30 ,
b=20 т/к: ауданы канша
процентке өзгереді
шешуі:
100%-25%=75%;
100%+20%=120%;
75 :100=0,75;120:100=1,2;1,2 0,75=0,9
100-0,9*100=100-90=10 Жауабы:
10 азаяды
3.
Трапецияның диагоналдары оны төрт үшбұрышқа бөлген. Бір
қабырғасы табаны болатын
үшбұрыштар ауданы 6 және 24. Трапеция ауданын
табыңыз.
Берілгені:
S1=6,
S2=24; т/к:
Sтр шешуі:
S3=
S4 ,S1S2=S3S4
теңдігінен =6*24=144
S3=S4=12;
Sтр=6+24+12+12=54
2-ші
әдіс: Sтр= 2=( + )2=6+2 +24=54;
Жауабы:
54.
4.
Үлкен
табаны 2, қалған қабырғалары 1-ге тең трапецияға сырттай сызылған
шеңбердің радиусын табыңыз.
Берілгені: АД=2,
АВ=ВС=СД=1; т/к: R; шешуі: КД= AK=1,5; CK2=1-0,25=0,75= ;
CK= ; AC2=2,25+0,75=3;
AC= .
S= ;
S= = ; R=
Жауабы:
1
5.
АВСД ромб
АВД үшбұрышына сырттай сызылған шеңбер ромбының үлкен АС диагоналын
Е нүктесінде қияды. Егер АВ=8√5 ,
ВД=16 болса, онда СЕ-ні
табыңыз.
Берілгені:
АB=8 ,BD=16;
т/к: CE;
шешуі: АО2=AB2-BO2=(8 2-82==320-64=256; AO=16,
AC=2AO=32; SABD= AO BD= . R= = =10, AB=2R=20;
CE=AC-AE=32-20=12
Жауабы: 12
6.
Радиустары 3 см және 8 см болатын екі шеңбер сырттай
жанасады. Жанасу нүктесінен осы шеңберлерге жүргізілген ортақ
жанамаға дейінгі қашықтықты табыңыз.
Берілгені:
R1=3,
R2=8; т/к: d;
шешуі: d= ;
d= см.
Жауабы: см
7.
A(-3;2;-1), B(2;-1;-3), C(1;-4;3), D(-1;2;-2)
нүктелерінің координаталары берілген.
табыңыз.
Берілгені: A(-3;2;-1),
B(2;-1;-3), C(1;-4;3), D(-1;2;-2) т/к:
шешуі:
АВ=(2+3;-1-2;-3+1)=(5;-3;-2);CD=(-1-1;2+4;-2-3)=(-2;6;-5);
2АВ+3СД=
(10;-6;-4)+(-6;18;-15)=(4;12;-19); = = =
Жауабы:
8.
А(-2;4) ,
В(5;2) және С(3;0) үшбұрыш төбелері. Оның ауданын
табыңыз.
Берілгені: A(-2;4), B(5;2),
C(3;0) т/к
:
S
шешуі:
АВ=(5+2;2-4)=(7;-2),
AC=(3+2;0-4)=(5;-4);S= 9
Жауабы:9
9.
Дұрыс
үшбұрышты пирамиданың бүйір қыры 6, ол табанымен
300 бұрыш жасайды.
Пирамиданың көлемін табыңыз.
Берілгені: <KBO=300,
KB=6; т/к : V;
шешуі:
BO=KB Cos300=6 ;КО=3,
BP= ;S= 2=
V= Жауабы:
10. Конустың остік
қимасы қабырғалары 1-ге тең үшбұрыш. Конустың осімен, оның
табанымен және бүйір жағымен жанасатын сфераның радиусын
табыңыз.
Берілгені: SA=SB=AB=1; т/к : r;
шешуі: OB= ,
SO= ;
r=
Жауабы:
11.Дұрыс төртбұрышты
призма шарға іштей сызылған. Шар радиусы 5 см,
призма
табанының қыры 6 см.
Призма биіктігін табыңыз.
Берілгені: d1=6 см, d=10см; т/к : h
;шешуі: h=
Жауабы:
12.Екі шардың
беттерінің аудандарының қатынасы 4:1. Көлемдерінің қатынасын
табыңыз.
Берілгені: ;т/к : ; шешуі:
=( Жауабы: 8:1
13.Табанының
қабырғасы 9 см және биіктігі 10 см болатын үшбұрышты
дұрыс
пирамидаға сырттай
шар сызылған. Шардың радиусын табыңыз.
Берілгені: a=9
,h=10 т/к
: R
;шешуі: AO= ;AO=3
L= R= см. Жауабы : см
Жамбыл облысы, Шу
ауданы, Бәйдібек ауылы