
Computer Architecture
Topic 1:
Numeral systems with different
bases

2
Positional Numeral System
In Positional Numeral System the position of digit plays important role.
The number in this system has the following view
X = x
s
x
s-1
...x
1
x
0
,x
-1
...x
-m
.
Point divides an integer part and a fraction of number.
Quantitative equivalent of this equation:
X = k
s
x
s
+k
s-1
x
s-1
+...+k
1
x
1
+k
0
x
0
+k
-1
x
-1
+...+k
-m
x
-m
,
Where k – base of the numeral system;
s+1 – precision of the integer part of number;
m - precision of the fraction of number;
xi – digit i of the number (xi = 0, 1, ..., k-1);
ki – weight of digit i.

3
Decimal Numbers
In decimal system any number can be presented by digits from 0 to 9.
The position of digit plays important role. The rule of data
representation in decimal system has the following view:
Where:
N – a number (quantity) of digits in the integer part of number (from
left side of point);
M – quantity of digits in the fractio nal part of number (from right side
of point);
Di – volume of i-th digit in the integer part of number;
D'i – volume of i-th digit in the fractional part of number;
D – volume of the number;
Integer or fractional part can be absent in the number (N or M = 0).
M
M
N
N
N
N
D DDDD D DD
10...10 101010...10 10
' 2'
2
1'
1
0
0
1
1
2
2
1
1

4
Binary Numbers
In computers all information is presente d by the binary digits. The reason is
that its base element has two states.
The rule of data representation in binary system has the following view:
Where:
N – quantity of binary digits in the integer part of number (from left side of
point);
M – quantity of binary digits in the fractional part of number (from right
side of point);
Bi – volume of i-th digit in the integer part of number;
B'i – volume of i-th digit in the fractional part of number;
B – volume of the number.
Integer or fractional part can be absent in the number (N or M = 0).
M
M
N
N
N
N
B BBBB B BB
2...2222...2 2
' 2'
2
1'
1
0
0
1
1
2
2
1
1

5
Examples of Binary Numbers
10
2 1 0 1 2 3 4 5 6
2
25.9025.0281664
21202021202121202101,1011010
10 2
10
5 3 2 0 2
2
75.10211.1100110
0,40625.52121212121 01101,101

6
Transformation of numbers from numeral system
with base k to decimal
A number has the following view
X = x
s
x
s-1
...x
1
x
0
,x
-1
...x
-m
.
The point divides integer part and fraction of the number. Quantitative
equivalent of this equation is:
X = k
s
x
s
+k
s-1
x
s-1
+...+k
1
x
1
+k
0
x
0
+k
-1
x
-1
+...+k
-m
x
-m
,
Where k – base of the numeral system;
s+1 – precision of the integer part of number;
m - precision of the fraction of number;
xi – digit i of the number (xi = 0, 1, ..., k-1);
ki – weight of the digit i.
Example:
1011,1001
2
= 1·2
3
+ 0·2
2
+1·2
1
+1·2
0
+1·2
-1
+0·2
-2
+0·2
-3
+1·2
-4
=
= 8 + 0 + 2 + 1 + 0,5 + 0 + 0 + 0,0625 = 11,5625;
X
10
= 11,5625.

7
Transformation of numbers from decimal
to numeral system with base k
Example. Decimal 11,5625 to binary
Integer part:
11 : 2 = 5, rest 1 (low-order bit of result),
5 : 2 = 2, rest 1,
2 : 2 = 1, rest 0,
1 : 2 = 0, rest 1 (high-order bit of result).
Result X
i
= 1011.

8
Transformation of numbers from decimal
to numeral system with base k
Example. Decimal 11,5625 to binary
Fractional part:
Result X2f =0,10010.
Full result
X2= X2i+X2f = 1011 + 0,10010 = 1011,10010.

9
Hexadecimal numbers
binary
Hexadecimal
binary
Hexadecimal
0000
0
1000
8
0001
1
1001
9
0010
2
1010
A
0011
3
1011
B
0100
4
1100
C
0101
5
1101
D
0110
6
1110
E
0111
7
1111
F
жүктеу мүмкіндігіне ие боласыз
Бұл материал сайт қолданушысы жариялаған. Материалдың ішінде жазылған барлық ақпаратқа жауапкершілікті жариялаған қолданушы жауап береді. Ұстаз тілегі тек ақпаратты таратуға қолдау көрсетеді. Егер материал сіздің авторлық құқығыңызды бұзған болса немесе басқа да себептермен сайттан өшіру керек деп ойласаңыз осында жазыңыз
Компьютерлік архитектура
Компьютерлік архитектура

Computer Architecture
Topic 1:
Numeral systems with different
bases

2
Positional Numeral System
In Positional Numeral System the position of digit plays important role.
The number in this system has the following view
X = x
s
x
s-1
...x
1
x
0
,x
-1
...x
-m
.
Point divides an integer part and a fraction of number.
Quantitative equivalent of this equation:
X = k
s
x
s
+k
s-1
x
s-1
+...+k
1
x
1
+k
0
x
0
+k
-1
x
-1
+...+k
-m
x
-m
,
Where k – base of the numeral system;
s+1 – precision of the integer part of number;
m - precision of the fraction of number;
xi – digit i of the number (xi = 0, 1, ..., k-1);
ki – weight of digit i.

3
Decimal Numbers
In decimal system any number can be presented by digits from 0 to 9.
The position of digit plays important role. The rule of data
representation in decimal system has the following view:
Where:
N – a number (quantity) of digits in the integer part of number (from
left side of point);
M – quantity of digits in the fractio nal part of number (from right side
of point);
Di – volume of i-th digit in the integer part of number;
D'i – volume of i-th digit in the fractional part of number;
D – volume of the number;
Integer or fractional part can be absent in the number (N or M = 0).
M
M
N
N
N
N
D DDDD D DD
10...10 101010...10 10
' 2'
2
1'
1
0
0
1
1
2
2
1
1

4
Binary Numbers
In computers all information is presente d by the binary digits. The reason is
that its base element has two states.
The rule of data representation in binary system has the following view:
Where:
N – quantity of binary digits in the integer part of number (from left side of
point);
M – quantity of binary digits in the fractional part of number (from right
side of point);
Bi – volume of i-th digit in the integer part of number;
B'i – volume of i-th digit in the fractional part of number;
B – volume of the number.
Integer or fractional part can be absent in the number (N or M = 0).
M
M
N
N
N
N
B BBBB B BB
2...2222...2 2
' 2'
2
1'
1
0
0
1
1
2
2
1
1

5
Examples of Binary Numbers
10
2 1 0 1 2 3 4 5 6
2
25.9025.0281664
21202021202121202101,1011010
10 2
10
5 3 2 0 2
2
75.10211.1100110
0,40625.52121212121 01101,101

6
Transformation of numbers from numeral system
with base k to decimal
A number has the following view
X = x
s
x
s-1
...x
1
x
0
,x
-1
...x
-m
.
The point divides integer part and fraction of the number. Quantitative
equivalent of this equation is:
X = k
s
x
s
+k
s-1
x
s-1
+...+k
1
x
1
+k
0
x
0
+k
-1
x
-1
+...+k
-m
x
-m
,
Where k – base of the numeral system;
s+1 – precision of the integer part of number;
m - precision of the fraction of number;
xi – digit i of the number (xi = 0, 1, ..., k-1);
ki – weight of the digit i.
Example:
1011,1001
2
= 1·2
3
+ 0·2
2
+1·2
1
+1·2
0
+1·2
-1
+0·2
-2
+0·2
-3
+1·2
-4
=
= 8 + 0 + 2 + 1 + 0,5 + 0 + 0 + 0,0625 = 11,5625;
X
10
= 11,5625.

7
Transformation of numbers from decimal
to numeral system with base k
Example. Decimal 11,5625 to binary
Integer part:
11 : 2 = 5, rest 1 (low-order bit of result),
5 : 2 = 2, rest 1,
2 : 2 = 1, rest 0,
1 : 2 = 0, rest 1 (high-order bit of result).
Result X
i
= 1011.

8
Transformation of numbers from decimal
to numeral system with base k
Example. Decimal 11,5625 to binary
Fractional part:
Result X2f =0,10010.
Full result
X2= X2i+X2f = 1011 + 0,10010 = 1011,10010.

9
Hexadecimal numbers
binary
Hexadecimal
binary
Hexadecimal
0000
0
1000
8
0001
1
1001
9
0010
2
1010
A
0011
3
1011
B
0100
4
1100
C
0101
5
1101
D
0110
6
1110
E
0111
7
1111
F
шағым қалдыра аласыз













