Материалдар / статья на тему "Развитие креативных способностей учащихся на уроках математики"

статья на тему "Развитие креативных способностей учащихся на уроках математики"

Материал туралы қысқаша түсінік
Актуальность проблемы творческого развития личности школьника определяется современными требованиями к содержанию образования. Учащийся в процессе обучения должен не только приобрести необходимые знания и умения, но и выработать опыт эмоционально-ценностного отношения к процессу познания и опыт самостоятельной творческой деятельности. Обучение – сложный процесс, он предполагает, прежде всего, деятельность учителя и деятельность учащихся.
Тегін турнир Мұғалімдер мен Тәрбиешілерге
Дипломдар мен сертификаттарды алып үлгеріңіз!
Бұл бетте материалдың қысқаша нұсқасы ұсынылған. Материалдың толық нұсқасын жүктеп алып, көруге болады
logo

Материалдың толық нұсқасын
жүктеп алып көруге болады

Развитие креативных способностей учащихся на уроках математики

Сабдина Анаргүл Амантайқызы, учитель математики

Искакова Гюльнар Мейрамовна, учитель математики

Серікболқызы Камшат, учитель математики


Главные задачи современной школы - раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, конкурентном мире. Школьное обучение должно быть построено так, чтобы выпускники могли самостоятельно ставить и достигать серьёзных целей, умело реагировать на разные жизненные ситуации.


Если ученик в школе не научился сам ничего творить, то и в жизни он всегда будет только подражать, копировать, так как мало таких, которые бы, научившись копировать, умели сделать самостоятельное приложение этих сведений”.

Л.Толстой

Эти слова Льва Николаевича Толстого будут актуальны столько, сколько будет существовать школа.

Цель: развитие творческих, креативных способностей учащихся на уроках математики.

Задачи:

  • создавать условия для конкретного воплощения творческих идей, предоставлять ребенку свободу выбора области приложения сил и методов достижения цели, уметь воздерживаться от вмешательства в процесс творческой деятельности;

  • на уроках уделять внимание развитию логического мышления, характеризующегося быстротой, гибкостью, оригинальностью и точностью, охватом всех возможностей, порождением оригинальных идей в ситуации успеха, увлеченности и удовлетворенности детей учением;

  • избегать неодобрительных оценок творческих попыток ребенка, уважать его незнание, поощрять инициативу, развивать диалог равных на уроке, сотворчество;

  • помогать ребенку открывать и ценить в себе творческую, креативную личность.


Ожидаемый результат:

  • развитие  индивидуальных  особенностей  каждого  ребёнка;

  • повышение  коммуникативной  компетентности  учащихся;

  • развитие  самоуважения  и  формирование  адекватной  самооценки;

  • формирование  потребности  в  творческой  самореализации  личности;

  • формирование  уважительного  отношения    к  личности  других  людей.


Творчество — процесс деятельности, создающий качественно новые материальные и духовные ценности или итог создания объективно нового. (Материал из Википедии).

Креативность (от англ. create - создавать, творить) — творческие способности индивида, характеризующиеся готовностью к принятию и созданию принципиально новых идей, отклоняющихся от традиционных или принятых схем мышления и входящие в структуру одарённости в качестве независимого фактора, а также способность решать проблемы, возникающие внутри статичных систем.

На бытовом уровне креативность проявляется как смекалка — способность достигать цели, находить выход из кажущейся безвыходной ситуации, используя обстановку, предметы и обстоятельства необычным образом. В широком смысле — нетривиальное и остроумное решение проблемы.

Людей, обладающих высоким уровнем креативности, называют креативами.

Согласно американскому психологу Абрахаму Маслоу и большинство тестов это подтверждают, что все дети чрезвычайно креативны — это творческая направленность, врождённо свойственная всем, но теряемая большинством под воздействием сложившейся системы воспитания, образования и социальной практики.

Основные критерии креативности.

1. Беглость мысли - количество идей, возникающих за некоторую единицу времени, легкость генерирования идей.

2. Гибкость мысли - способность переключаться с одной идеи на другую.
3. Оригинальность - способность производить идеи, отличающиеся от общепринятых стереотипов
.

4. Любознательность - чувствительность к проблемам, к окружающим ситуациям, восприимчивость — чувствительность к необычным деталям, противоречиям и неопределенности, готовность быстро переключаться с одной идеи на другую.
5. Способность к разработке гипотезы - смелой идеи, которая потом нуждается в обстоятельной эмпирической проверке.

6. Удовлетворенность - итог проявления креативности, - логическая независимость реакций от стимулов, способность решать проблемы, способность к анализу и синтезу.


Примеры упражнений, которые помогут развить креативное мышление:

  • Безумство архитектора”: Записать любые 10 существительных. Мандарин, бокал, поле, вода, помидор - все, что приходит в голову. Эти 10 слов - 10 обязательных условий заказчика, которому вы проектируете дом. К примеру, “мандарин” - сделайте стены оранжевого цвета, “вода”-пусть перед домом будет фонтан или прудик, “помидор” - запустите в пруд красных рыбок или повесьте красные занавески и т.д. Дайте своей фантазии волю.

  • Придумайте слово и представьте, что оно аббревиатура - расшифруйте ее. Например, ШКАФ: Школа культурных Анонимных Фотографов. ВЕСНА: Веселый Енот Сегодня Немного Агрессивен.

  • Придумайте словосочетания с противоположным значением слов, например, черный снег, высокий карлик, твердый пух, жесткие облака и т.д.

Чтобы любой урок (занятие, факультатив) был направлен на развитие творческих способностей учащихся и реализовал их, учителю необходимо при его проведении ориентироваться на следующие принципы:

  1. Принцип открытости заданий, который означает, что большинство упражнений предлагают не один, а несколько вариантов решений;

  2. Предоставление детям возможности активно задавать вопросы, познавательной активности в целом;

  3. Помощь детям в выражении их идей;

  4. Уважительное отношение к идеям участников обсуждения;

  5. Создание безопасной психологической атмосферы;

  6. Избегание неодобрительной оценки творческих идей ребёнка, проявление сочувствия к неудачам;

  7. Использование личного примера, ведущего творческого подхода к решению проблем;

  8. Возможность самостоятельного поиска решений.


У каждого ребенка есть способности и таланты. Дети от природы любознательны и полны желания учиться. Задача педагога, используя разнообразные методы обучения, в том числе и игровые, систематически, целенаправленно развивать у детей подвижность и гибкость мышления. Принципиально важно, чтобы на каждом занятии ребенок переживал радость открытия, чтобы у него формировались вера в свои силы и познавательный интерес.




Структура творческого урока включает в себя четыре этапа.

Первый этап. Разминка. На этом этапе преобладают репродуктивные задачи, хотя доля репродукции успешно снижается за счет ограничения времени на ответ. Цель применения познавательных задач во время разминки: способствовать подготовке памяти, актуализация полученных ранее знаний к выполнению творческих заданий, создание благоприятного эмоционального фона и т. д.

Э. Кант в свое время писал, что в памяти важны три качества: быстрота запоминания, его прочность и проворство припоминания. Именно это “проворство припоминания”, или, выражаясь современным языком, готовность памяти, является одним из важнейших условий развития творческих способностей (РТС). Ученые доказали, что для возникновения “озарения” (инсайта) очень важно в нужный момент вспомнить то, что является базой для творческого решения проблемы и входит в фонд необходимых знаний. Плохая память, как известно, — это зачастую и плохое внимание, которое, однако, имеет способность к развитию при помощи системы задач.

Обучение должно быть победным! Особую роль в этом играют одобрительные реплики, стимулирующие работу учащихся и вселяющие в них уверенность в свои силы. (“Хорошо, молодец! Не получилось — ничего страшного, зато я вижу, что ты активно работаешь, проявляешь умение мыслить, — и успех, конечно же, придет!”)

Второй этап. Развитие психических механизмов как основы развития творческих способностей (памяти, внимания, воображения, наблюдательности).

Третий этап. Решение частично-поисковых задач разного уровня.

Иногда говорят, что умение творить — удел немногих и творческая личность является даром богов. Может быть, в этом есть доля истины, так как известно, что Пушкины и Моцарты рождаются достаточно редко. Но мы говорим не о воспитании гениев, а о формировании личности, умеющей мыслить самостоятельно, нестандартно. Задачи данного этапа и выражают именно такой подход к проблеме развития творческих способностей.

Четвертый этап. Решение творческих задач, которые можно разделить на два типа. Первый — это собственно творческие задания, которые связаны с той или иной учебной дисциплиной. Они требуют большей или полной самостоятельности и рассчитаны на поисковую деятельность, неординарный, нетрадиционный подход и творческое применение знаний. Второй — это задачи повышенной трудности интегративного характера. Они отличаются тем, что одно и то же задание ориентировано на применение знаний из различных школьных дисциплин одновременно, то есть на интеграцию знаний и способов деятельности в целом.

В процессе занятий у учащихся развиваются следующие умения:

  1. Умение анализировать проблемные ситуации;

  2. Умение выдвигать альтернативные гипотезы решения проблемных ситуаций;

  3. Умение разрешать противоречия;

  4. Умение создавать творческие задания

Примеры таких заданий.

I. Задания с ограниченным временем на выполнение (разминка). Они идут, как правило, в достаточно высоком темпе, на каждый ответ дается 2-3 секунды. В них чередуются вопросы из разных областей знаний (математика, русский, английский языки, история, география и т.д.). Задания, естественно, подбираются в соответствии с уровнем знаний и умений учащихся. Например: Сколько:

  • месяцев в году, кроме летних?

  • углов у стола; а если один отпилили, то сколько осталось?

  1. На улице гуляли Петя, Ира, Юра, Миша, Таня. Сколько было мальчиков? Пришел Володя. Сколько стало детей?

  2. Сколько раз надо отмерить, чтобы один раз отрезать?

  3. Каким по счету является “б” в названии последнего месяца осени?

  4. Чему равна сумма двух последних цифр нынешнего года?


II. Упражнения, ориентированные на развитие психических механизмов, являющихся основой развития творческих способностей.)

Репродуктивные задания

Интегративные задания. Они рассчитаны на интеграцию различных репродуктивных уровней знания и ценны тем, что позволяют в короткий срок выявить интересы учащихся.

Интегративность вопросов (чередование их из различных учебных дисциплин) и объединение в одном задании разных областей знаний являются логическим выражением реализации межпредметных связей в обучении.

Пример репродуктивной задачи интегративного характера.

Пример 1. Интеллектуальные диктанты, (интегрированные уроки), которые проверяют не только математические знания, но и общий кругозор. Например (5 класс): 1) Найдите произведение цифр года начала Великой Отечественной войны; 2) Количество букв столицы Казахстана умножьте на 0,8; 3) Количество согласных в названии столицы нашей Родины возведите в степень на количество гласных в этом слове. И т.д.

Пример 2. Арай вспомнила, что в следующую пятницу - Международный женский день, а она еще не приготовила маме подарок. Какое это было число? (1 марта).


III. В целях развития логического мышления учащихся нужно предлагать им самостоятельно производить анализ, синтез, сравнение, классификацию, обобщение, строить индуктивные и дедуктивные умозаключения. Такая возможность предоставляется в условиях выполнения логически-поисковых заданий, которые обеспечат преемственность перехода от простых формально-логических действий к сложным, от заданий на репродукцию и запоминание — к истинно творческим. Частично-поисковая задача содержит такой вид задания, в процессе выполнения которого учащиеся, как правило, самостоятельно или при незначительной помощи учителя открывают новые для себя знания и способы их добывания,

К конкретным частично-поисковым задачам можно отнести, например, такие задания: на нахождение закономерности; на нахождение принципа группировки и расположения приведенных слов, цифр, явлений; на подбор возможно большего количества примеров к какому-либо теоретическому положению; на нахождение нескольких вариантов ответа на один и тот же вопрос; на нахождение наиболее рационального способа решения и т. д.

Пример 1. Проанализируйте следующие ряды чисел, выявите закономерность и продолжите их запись: а) 1, 3, 4, 7, 11, 18… б) 2, 8, 3, 7, 4, 6...

Пример 2. По какому признаку можно объединить числа:

а) 121, 40, 31, 22 (по сумме цифр); б) 2, 9, 20 (по начальной букве).

Особое место следует отводить подбору таких заданий, которые имеют внешнее сходство при разных содержании и способах решения.

Ребус — это своеобразная загадка, которая изображается при помощи букв, фигур, знаков. В примерах все слова ребусов изображены при помощи букв. Как их разгадывать? Если буквы нарисованы одна в другой, то их названия читаются с прибавлением буквы “в”; если одна буква находится под другой, то читать их надо с прибавлением “на”, “над” или “под”; если между буквами стоит знак плюс (+), это означает прибавление буквы “с” или “и”. Еще одна буква может быть расположена “у” или “за” какой-то.

Пример. Разгадайте внешне похожие ребусы: 1ОЧКА, 1БОР, Ш1А, Ф1А, 2Д, ПО2Л. (Одиночка, разбор, школа, фраза, парад, подвал.)

Для развития творческих способностей младших подростков огромное значение имеют такие частично-поисковые задания, которые содержат несколько вариантов решения. Выполняя их, учащиеся должны самостоятельно выявлять эти варианты (как можно большее их количество) и по возможности определять наиболее рациональные из них.

Например: Посмотрите на это выражение: 9 + 8 = 5. С точки зрения математики это полный абсурд. Но все же подумайте и попытайтесь сообразить, догадаться, в какой ситуации оно будет верно. Разумеется, учащиеся будут вначале озадачены: ведь 9 + 8 = 17. В процессе поиска ответа они дадут Различные варианты трактовки этого выражения, пока не придут к мысли, что в какой-то ситуации 5 может быть равно 17. В итоге, как правило, приходит догадка, что это возможно на “языке часов”. Так, если к девяти часам утра прибавить восемь, получится семнадцать часов дня, а в разговорной речи — пять часов. Красивый ответ! Не правда ли?

IV. Творческие задачи.

Одним из весьма оригинальных творческих задач являются развивающие каноны (РК). “РК — это упражнение, элемент интеллектуальной игры или задача, состоящая из шести пространственно организованных элементов, связанных между собой некоторыми логическими, ассоциативными или иными связями” (А. В. Попов).

1. Приведем пример РК:

 

Утро

з

День

о

Вечер

?

2. Из геометрии:

80

о

90

п

100

?

1. В этом задании учащимся необходимо проанализировать взаимосвязи между имеющимися элементами правой и левой половинок канона, выявить их и по аналогии выстроить недостающую цепочку. В нашем случае это будет выглядеть таким образом: утром это начинается с “з”- завтрак, днем с “о”- обед, следовательно, вечером это будет ужин - “у”.

2. РК можно строить как на базе конкретного предмета школьного курса, так и на интегративном материале. Ответ: 2. (80 — острый угол, 90 — прямой, 100 — тупой).

Придумывание задач, сказок, действующими лицами которых становятся часто математические объекты – также один из способов развития творческого воображения учащихся. Поэтому учитель предлагает желающим заняться творчеством.

Несомненно, что творчество невозможно без умения наблюдать, примечать особенности явлений, чисел, понятий. Например, как маленький Гаусс сосчитал в уме сумму чисел 1+2+3+… +99+100; как А.Н. Колмогоров в шестилетнем возрасте заметил, что 1 в квадрате = 1, 2 в квадрате = 1+3, 3 в квадрате = 1+3+5,…

Вывод. В каждом из нас “есть внутренняя потенция к глубокому и конструктивному творчеству”, и это особенно важно учитывать в работе с детьми. Проводя групповые занятия с учащимися на уроках математики, во внеурочное время, работая с различным тематическим материалом, учитель имеет возможность опираться на такие принципы построения занятий, использовать такие формы подачи материала и работы с ним, которые стимулируют развитие основных качеств креативности (беглость, гибкость, оригинальность мысли, разработанность идей).

Развитие креативности способствует решению следующих задач:

  • научить детей мыслить в разных направлениях;

  • научить находить решения в нестандартных ситуациях;

  • развить оригинальность мыслительной деятельности;

  • научить детей анализировать сложившуюся проблемную ситуацию с разных сторон;

  • развить свойства мышления, необходимые для дальнейшей плодотворной жизнедеятельности и адаптации в быстро меняющемся мире.

Мы стараемся подобрать материал к урокам математики так, чтобы ориентировать на развитие мышления, творческих способностей учащихся, их интереса к предмету. Применяем нестандартные формы уроков: уроки общения, урок зачет, уроки-соревнования, уроки КВН, уроки «Брейн-ринг», и т д.

Продуктивным считаем в системе метод чередования задач, решаемых разными способами, сопоставление задач, различные преобразования, приводящие к упрощению и усложнению. Создаем проблемные ситуации, ориентирующие учащихся на поиск. в результате которого ученик выступает в роли исследователя, открывая для себя новые знания. Детям нравится работать самостоятельно, не боятся допустить ошибку в ответе, т.к. они понимают, что учителя всегда готовы им помочь.

И в заключении, необходимым условием развития креативных способностей учащихся является упражнение в их решении.




Литература

1. Болотов В.А., Сериков В.В. “Компетентностная модель: от идеи к образовательной программе”, “Педагогика № 10, 2003.

2. Иванова А.И. Методика исследования способности к обучению. М. ИМАТОН, 1999.

3. Игнатьев Е.И.В царстве смекалки. -М., 1984. – 176 с.

4. Лернер И.Я. Проблемное обучение. - М.: Знание, 1974.

5. «Развитие творческой активности школьника». Под ред. А.Н. Матюшкина. М., Педагогика, 2003 г

6.«Рациональное сочетание методов развития деятельности школьников». Под ред. Н.П.Пальянова, Поиск, 2003 г.

7. Матюшкин А. М. Загадка одаренности. М.: Школа-Пресс. 2000.

8. Вертгеймер М. «Продуктивное мышление». М. 2003 г.









Ресми байқаулар тізімі
Республикалық байқауларға қатысып жарамды дипломдар алып санатыңызды көтеріңіз!
Осы аптаның ең үздік материалдары
Педагогтардың біліктілігін арттыру курстары
Аттестацияда (ПББ) 100% келетін
тақырыптармен дайындаймыз
Аттестацияда (ПББ) келетін тақырыптар бойынша жасалған тесттермен дайындалып, бізбен бірге тестілеуден оңай өтесіз
Өткен жылы бізбен дайындалған ұстаздар 50/50 жинап рекорд жасады
Толығырақ