Изотоптар

Тақырып бойынша 11 материал табылды

Изотоптар

Материал туралы қысқаша түсінік
Изотоптар тақырыбына керекті мәліметтер
Материалдың қысқаша нұсқасы

Изотоптар

Ядролық реакция

Изотоптар ядроларында протондар саны бірдей, бірақ массалары әртүрлі белгілі бір элементті құрайтын атомдар түрі.

Бір ғана элементтің әртүрлі изотоптарына тән атомдар өздерінің ядросына кіретін нейтрондар саны жағынан, ядролық қасиеттері тұрғысынан бір-бірінен анық өзгешеленеді, алайда олар, электронды қабаттары құрылысының бірдей болуына байланысты, бір-біріне өте ұқсас химиялық қасиеттерді иемденеді. Химиялық элементтердің көпшілігі атомдық салмақтары әр түрлі изотоп қоспасынан тұрады. Изотоптардың өмір сүру кезеңі секундтың мыңнан бір бөлігінен бірнеше миллион жылдарға дейін созылады. Бүгінгі танда 264 тұрақты изотоптар, 50 шамалы табиғи радиоактивті изотоптар және 1000-нан астам жасанды радиоактивті изотоптар белгілі

Радиоактивтiк құбылысты зерттеу атом ядроларының табиғатына қатысты маңызды жаңалықтардың ашылуына себепшi болды. Көптеген радиоактивтiк түрленулердi бақылау нәтижесінде радиоактивтiк қасиеттерi мүлдем әр түрлi (яғни түрлiше тәсiлдермен ыдырайтын), бiрақ өздерiнiң химиялық қасиеттерi жөнiнен барабар заттар бар екенi анықталды. Белгiлi химиялық тәсiлдердiң бәрiмен де оларды ажырату ешбiр мүмкiн болмады. Осының негiзiнде 1911 ж. Содди хямиялық қасиеттері бiрдей, басқа жағынан, мәселен өзiнiң радиоактивтiгiмен ұксамайтын элементтер бар екенi жөнiнде болжам айтты. Мұндай элементтердi Менделеевтiң периодты жүйесiнің бiр тор көзiне орналастыру керек. Сондықтан Содди оларды изотоптар (яғни периодтық жүйеде бiрдей орын алатындар) деп атады.

Бiр жылдан соң Дж.Дж. Томсон электр және магнит өрiсiндегi ауытқу тәсiлiмен неон иондарының массасына дәл өлшеулер жүргiзген кезде Соддидiң болжамы ойдағыдай дәлелденiп, оған терең түсiнiктеме берiлдi. Томсон неон атомдардың екi түрiнiң қоспасы екенiн байқады. Олардың басым көпшiлiгiнiң салыстырмалы атомдық массасы 20-ға тең. Бiрақ салыстырмалы атомдық массасы 22-ге тең аздаған атомдар қоспасы да бар. Осының нәтижесiнде қоспаның салыстырмалы атомдық массасы 20,2-ге тең. Бiрдей химиялық қасиеттерi бар атомдардың массаларында айырмашылық байқалады. Неонның екi түрiнiң де Менделеев кестесiнде бiрдей орын алатындығы анық, ендеше, олар изотоптар болып табылады. Сонымен, изотоптардың тек өздерiнiң радиоактивтiк қасиеттерi жағынан ғана емес, массасы жағынан да айырмашылығы болады екен. Сонымен бiрге соңғы жағдай басымырақ рөл атқарады. Изотоптарда атом ядроларының зарядтары бiрдей болады. Сондықтан атом қабықшаларындағы электрондар саны, демек, изотоптардың химиялық қасиеттерi бiрдей. Бiрақ ядроның массалары әр түрлi. Сонымен қатар, ядролар радиоактивтi де, тұрақты да бола алады. Радиоактивтi изотоптар қасиеттерiнiң түрлiше болуы олардың ядроларының массалары әр түрлi болуына байланысты.

Қазiргi уақытта химиялық элементтердiң бәрiнiң изотоптары бар екендiгi анықталған. Кейбiр элементтрдiң изотоптары тұрақты болмайды (яғни радиоактивтi). Изотоптар табиғаттағы ең ауыр элемент — уранда (салыстырмалы атомдық массасы 238, 235 т. 6.) және ең жеңiл — сутегінде де (салыстырмалы атомдық массасы 1, 2, 3) бар.

Әсiресе сутегiнiң изотоптары ерекше, себебi массасы жағынан екi немесе үш есе айырмашылығы бар. Салыстырмалы атомдық массасы 2 болатын изотоп дейтерий деп аталады. Ол стабилъдi (яғни радиоактивтi емес) және әдеттегi сутегiне аздаған қоспа (1: 4500) түрiнде енедi. Дейтерий оттегiмен косылғанда ауыр су пайда болады. Оның физикалық қасиеттері кәдiмгi судың қасиетiнен анағұрлым бөлек. Қалыпты атмосфералық кысымда ол 101,2 С-та қайнайды да, 3,80 С-та қатады. Салыстырмалы атомдық массасы 3 болатын изотоп тритий деп аталады. Ол - радиоактивтi, жартылай ыдырау периоды 12 жылға жуық. Изотоптардың болуы, атом ядросының заряды атомдардың барлық касиеттерiн анықтамай, тек химиялық қаеиеттерi мен электрон қабықшасының маңына байланысты физикалық қасиеттерiн дәлеледейдi. Атомның массасы мен радиоактивтiк касиеттерi оның Менделеев кестесiндегi реттiк нөмiрiмен анықталмайды.

Изотоптардың салыстырмалы атомдық массаларын дәл өлшегенде олардың бүтiн сандарға өте жақын болатындығының елеулi маңызы бар. Кейбiр химиялық элементтердің атомдық массаларының бүтiн саннан айырмашылығы көп болады. Мысалы, хлордың салыстырмалы 35,5-ке тең. Бұл табиғи күйде химиялық таза зат изотоптардың әр түрлi пропорциялардағы коспасы болып келетiндiгiн көрсетедi. Изотоптардың салыстырмалы атомдық массаларының бүтiн сан болуының (жуықтап алғанда) атом ядросының құрылысын анықтауда маңызы зор.

Химиялық элементтердiң бәрiнiң де изотоптары бар. Изотоптар атомы ядросының зарядтары бiрдей, бiрақ массалары әр түрлi





























Табиғи радиоактивтік


Радиоактивтілік (лат. radіo – сәуле шығару, actіvus – әсерлік) – орнықсыз атом ядроларының басқа элементтер ядросына бөлшектер немесе гамма-кванттар шығару

Тарихы

Толық мақаласы: Радиоактивтіктің ашылуы

Мария Склодовская-Кюри (1867 - 1934)

Ядролық физиканың даму тарихына көз жүгіртсек, оның қайнар көзі 1886 жылы француз ғалымы А. Беккерель ашқан табиғи радиоактивтік құбылысынан басталады. Атомдардың тұрақты еместiгi ХIХ ғасырдың ақырында ашылғанды. 46 жыл өткен соң ядролык реактор жасалды. Радиоактивтiктiң — атом ядросының күрделi құрлысын дәлелдейтiн құбылыстың ашылуы сәттi кездейсоқтықтың жемiсi болды. Рентген сәулелерi алғаш рет шапшаң электрондар разрядтық түтiктiң шыны ыдысының кабырғаларының соқтығысуынан алынған. Олармен бiр мезгiлде түтiк қабырғаларының жарық шығаруы байкалған. Беккерель ұзақ уақыт осы тектес құбылысты — алдын ала күн жарығына сәулелендiрiлген заттардың соңынан сәуле шығаруын зерттеумен шұғылданған. Оның ойында мынадай сұрақ пайда болады: уран тұздарын сәулелендiргеннен кейiн көрiнетiн жарықпен қатар рентген сәулесi де пайда болмай ма? Беккерель фотопластинаны тығыз қара қағазға орап, үстiне уран тұзының қиыршықтарын сеуiп, ашық күн сәулесiне койды. Айқындағаннан кейiн пластинаның тұз жатқан бөлiктерi қарайғанын көрген. Ендеше, уран, рентген сәулесi сияқты, мөлдiр емес денелерден өтiп, фотопластинаға әсер ететiн белгiсiз сәуле шығарады екен. Беккерелъ бұл сәуле шығару күн сәулелерiнiң әсерінен пайда болады деп ойлады. Бiрақ 1896 ж. ақпанның бiр күнiнде ауа райы бұлтты болғандықтан, кезектi тәжiрибенi өткiзу сәтi түспедi де, Беккерель үстiне уранның тұзы себiлген мыс крест жатқан пластинаны үстелдiң суырмасына алып койған. Екi күн өткен соң пластинаны алып айқындаған кезде, онда крестiң айқын колеңкесi түрiнде дақ пайда болғанын байқаған. Бұл — уран тұздарының сыртқы факторлардың әсерiнсiз-ақ, өздiгiнен белгiсiз сәуле шығаратынын көрсетедi. Қауырт зерттеулер басталды. Рас, осы сәттi кездейсоқтық, болмаған күнде де, ерте ме, кеш пе радиоактивтi құбылыс ашылған болар едi. Кешiкпей Беккерель, уран тұздарының шығарған сәулесi, рентген сәулелерi сияқты, ауаны иондайтынын, соның салдарынан электроскоп разрядталатынын байқаған. Уранның түрлiше химиялық қосылыстарын тексерiп көріп, ол мынадай маңызды фактiнi анықтады: сәуле шығарудың интенсивтiгi тек препараттағы уранның мөлшерiмен анықталады, оның қандай қосылыстарға кiретiндiгiне мүлдем тәуелсiз болады. Ендеше, бұл қасиет қосылыстарға тән емес, химиялық элемент уранға, оның атомдарына тең. Ураннан басқа химиялық элементтердің өздiгiнен сәуле шығаруға қабiлетiн байқауға талпынып көру сөзсiз едi. 1898 ж. Францияда Мария Склодовская-Кюри және басқа да ғалымдар торийдiң сәуле шығаратынын байқаған. Бұдан әрi жаңа элементтерi iздеуде негiзгi күш салған Мария Склодовская-Кюри мен оның ерi Пьер Кюри болды. Уран мен торийi бар рудаларды жуйелi түрде зерттеу, олардың iшiнен бұрын белгiсiз, Мария Склодовская-Кюридің отаны — Польшаның құрметiне полоний деп аталған, жаңа элементтi бөлiп алуға мүмкiндiк бердi. Ақырында өте қуатты сәуле шығаратын тағы бiр элемент ашылды. Ол радий (яғни сәулелi) деп аталды, Өздiгiнен сәуле шығару құбылысының өзiн ерлi-зайыпты Кюрилер радиоактiвтік деп атады. Радийдiң салыстырмалы атомның массасы 226-ға тең және Д.И. Менделеев кестесiндегi 88-нөмiрлi торкөзге орналасқан. Кюри ашқанға дейiн бұл торкөз бос болған. Өзiнiц химиялық қасиеттерi бойынша радий сілтiлiк жер элементтерiне жатады. Соңынан реттiк нөмiрi 83-тен жоғары химиялық элементтердiң бәрi де радиоактивтi болатындығы анықталды.[1]

А. Беккерель уран тұзының фотопластинаға әсерін зерттеген. Тәжірибелер барысында ол мына құбылысты байқаған: уран тұздары тығыз қара қағазбен оралған фотопластинаға әсер етіп, оның қараюын туғызатын, өтімділігі жоғары белгісіз сәулелерді шығарады екен. Мұқият зерттеулер нәтижесінде Беккерель өтімділігі жоғары белгісіз сәулелерді уран атомының өзі, ешқандай сыртқы әсерсіз-ақ, өздігінен шығаратынын анықтады. Белгісіз сәулелердің заттармен әрекеттескенде:

Бұл құбылысты зерттеу жұмыстары бірден басталды. Францияда 1898 жылы М.Склодовская-Кюри мен П. Кюри торий (   T h ) элементінің өздігінен сәуле шығаруын ашты. Өздігінен сәуле шығаратын химиялық элементті радиоактивті деп, ал сәуле шығару процесін радиоактивтік деп атауды М. Кюри ұсынған еді. Радиоактивтік латынның "radio" — сәуле шығару, "activus" — әрекетті деген сөздерінен алынған. Осы жылы ерлі-зайыпты ғалымдар тонналаған уран кенін өңдеу арқылы, радиоактивті екі жаңа химиялық элементті бөліп алады. Радиоактивтігі ураннан миллион есе қарқынды элементті (   R a ) радий, екінші элементті М. Склодовскаяның отанының құрметіне полоний (   P o ) деп атаған. 1908 жылы Резерфорд спектрлік анализ әдісімен радиоактивті газ — радонды (   R n ) ашты. Ауқымды жүргізілген зерттеулер Менделеев кестесіндегі қорғасыннан кейінгі ауыр элементтердің ядроларының бәрінде табиғи радиоактивтік бар екенін көрсетті. Кейбір жеңіл элементтердің де, мысалы, калийдің изотопы 19 40 K ,көміртегінің изотопы 6 12 C және т.б. табиғи радиоактивтік қасиеттері ашылды

Радиоактивті ыдырау

Э. Резерфод пен П. Кюри радиоактивтік кезіндегі сәуле шығарудың табиғатын зерттеу барысында оның құрамы күрделі екенін анықтайды. Радиоактивті радий   R a қорғасыннан жасалған калың қабатты ыдыстың ішінде орналасқан. Ыдыстың ортасында цилиндр пішінді арна бар. Ыдыстың түбіндегі радийден шыққан сәулелерге оған перпендикуляр бағытта күшті магнит өрісі әсер етеді. Арнаның қарсысында фотопластина бар. Барлық қондырғы вакуумде орналастырылған. 8.6-суретте көрсетілгендей радийден шығатын сәулелер ағыны магнит өрісінен өткеннен кейін үш шоққа бөлінген. Шоқтардың осылайша бөлінуін фотопластинадағы қарайған заттардың орындары бойынша анықтайды. Оларды сәйкесінше α (альфа)-сәуле, β (бета)-сәуле және γ (гамма)-сәуле деп атаған. α-сәуле дегеніміз — оң арядталған бөлшектер (α-бөлшек) ағыны, β-сәуле дегеніміз—өте шапшаң қозғалатын және жылдамдықтары бірдей емес теріс зарядталған бөлшектер (β-бөлшек) ағыны болып шықты. Магнит өрісінде ауытқу бұрышының әр түрлі болуы α-бөлшек пен β-бөлшектің массаларының бірдей емес екенін, әрі қарама-қарсы зарядталғанын көрсетеді. γ-сәулесі магнит өрісінде ауытқымайтын, жиілігі өте жоғары электромагниттік сәулелену кванты екен. Атом ядросының құрылысы мен құрылымына, нуклондардың байланыс энергиялары туралы мәліметтерге сүйене отырып, радиоактивті сәуле шығарудың табиғатын түсіндіру оңай. Құрамында нейтрон-дардан гөрі протондарының саны артық болатын ядро тұрақты емес, өйткені кулондық әрекеттесудің энергиясы басымырақ.

Нейтрондарының саны протондар санына қарағанда анағұрлым көбірек болатын ядроның тұрақты болмауының себебі, нейтроннық массасы протонның массасынан үлкен mn > mp . Ядроның массасының артуы оның энергиясының артуына әкеліп соғады. Артық энергиясы бар ядро осы энергияның артық бөлігін екі түрлі жолмен бөліп шығаруы мүмкін.

  1. Механикалық, термиялық және басқа да сыртқы әсерсіз-ақ, ядро өздігінен ыдырап радиоактивті сәуле шығарады және бөліну нәтижесінде түрленіп жаңа элементтің ядросы пайда болады. Өздігінен ыдырау процесінде α-бөлшектер ядродан ұшып шықса, оны альфа-ыдырау деп атайды.

  2. Ядро, өзінің электр зарядын бір заряд бірлігіне өзгертуі, яғни нейтронның протонға немесе протонның нейтронға айналуы арқылы тосын ыдырайды. Осы процесс ядродан электронның немесе позитронның (оң заряды бар электрон) ұшып шығуымен қабаттаса өтеді, оны бета-ыдырау дейді. Радиоактивті ядролардың өздігінен ыдырауы кезіндегі түрленуі 1913 жылы ағылшын ғалымы Ф . Содди тұжырымдаған ығысу ережесіне бағынады. Радиоактивті ыдырау кезінде электр зарядының және массалық санның сақталу заңдары, импульс пен энергияның сақталу заңдары да орындалады.

Альфа-ыдырау

α-бөлшегінің табиғатын 1908 жылы Резерфорд көптеген эксперименттік зерттеулер нәтижесінде анықтады. Альфа-ыдырауы кезінде ядродан өздігінен α-бөлшек — гелий атомының ядросы Не (екі протон және екі нейтрон) ұшып шығады және жаңа химиялық элементтің туынды ядросы пайда болады. 8.7-суретте альфа-ыдыраудың процесі көрсетілген.

Альфа-ыдырау кезінде атом ядросы зарядтың саны   Z екіге және массалық саны   A төртке кем туынды ядроға түрленеді. Жаңа элемент Менделеев кестесіндегі периодтық жуйенің бас жағына қарай екі орынға ығысады:   Z A X → Z − 2 A − 4 Y + 2 4 H eмұндағы   X — аналық ядроның белгісі,   Y— туынды ядроның таңбасы. Гелий атомының ядросы болып табылатын α-бөлшек үшін  2 4 H eбелгісін пайдаландық.

Аналық ядро ыдырағанда, α-бөлшек пен туынды ядро белгілі бір кинетикалық энергиямен жан-жаққа шашырай ұшады. Кейбір ыдырауда туынды ядро қозған күйде болуы мүмкін. Ыдырау энергиясын аналық ядромен байланысқан санақ жүйесінде энергияның сақталу заңын пайдаланып есептеуге болады. Ыдырау энергиясы   Q α қозу энергиясы мен кинетикалық энергиялардың қосындысына тең. Бастапқы энергия аналық ядроның тыныштық энергиясына тең екенін ескерсек, онда

  M a c 2 = ( M T + M H e ) c 2 + Q α  M a — аналық,   M T — туынды ядролардың,   M H e — гелий атомы ядросының массалары, бұдан ыдырау энергиясын табамыз:

  Q α = ( M α − M H e ) c 2

Бета-ыдырау

β-сәулесінің табиғатын 1899 ж Резерфорд ашқан болатын. Ол шапшаң қозғалатын электрондар ағыны. β-бөлшекті   − 1 0 e деп белгілейді. Массалық санның   A = 0 болуы, электронның массасы массаның атомдық бірлігімен салыстырғанда елеусіз аз екенін көрсетеді. Ығысу ережесін бета-ыдырауға қолданайық.

Бета-ыдырау кезінде атом ядросының зарядтық саны   Z бір заряд бірлігіне артады, ал массалық сан өзгермейді. Жаңа элемент Менделеев кестесіндегі периодтық жүйенің соңына қарай бір орынға ығысады:

  Z A X → Z + 1 A Y + − 1 0 e + 0 0 v

мұндағы   v — электрлік заряды нөлге тең, тыныштық массасы жоқ электрондық антинейтрино деп аталатын бөлшек.

Үлы итальян ғалымы Э.Фермидің ұсынысы бойынша бұл бөлшекті нейтрино v (итальянша neitrino — кішкентай нейтрон) деп атаған. Нейтриноның электр заряды мен тыныштық массасы нөлге тең болғандықтан, оның затпен әрекеттесуі әлсіз, сондықтан эксперимент арқылы тіркеу аса қиыншылық туғызды. Ұзакка созылған ізденістер нәтижесінде тек 1956 жылы ғана нейтриноны тіркеу мүмкін болды. Ал антинейтрино осы нейтриноның антибөлшегі болып табылады. Электрондық β--ыдыраудан басқа позитрондық β+-ыдырау процесі де өтуі мүмкін.

Гамма-ыдырау

1900 жылы Вилaрд ядролық сәуле шығарудың құрамындағы үшінші компоненттің бар екенін тапты, оны гамма (у)-сәуле шығару деп атаған. Гамма-сәуле шығару магнит өрісінде ауытқымайды, демек, оның заряды жоқ. Гамма-сәуле шығару радиоактивтік ыдыраудың жеке бір түрі емес, ол альфа және бета-ыдыраулармен қабаттаса өтетін процесс.



Жүктеу
bolisu
Бөлісу
ЖИ арқылы жасау
Файл форматы:
docx
20.05.2025
225
Жүктеу
ЖИ арқылы жасау
Бұл материалды қолданушы жариялаған. Ustaz Tilegi ақпаратты жеткізуші ғана болып табылады. Жарияланған материалдың мазмұны мен авторлық құқық толықтай автордың жауапкершілігінде. Егер материал авторлық құқықты бұзады немесе сайттан алынуы тиіс деп есептесеңіз,
шағым қалдыра аласыз
Қазақстандағы ең үлкен материалдар базасынан іздеу
Сіз үшін 400 000 ұстаздардың еңбегі мен тәжірибесін біріктіріп, ең үлкен материалдар базасын жасадық. Төменде керек материалды іздеп, жүктеп алып сабағыңызға қолдана аласыз
Материал жариялап, аттестацияға 100% жарамды сертификатты тегін алыңыз!
Ustaz tilegi журналы министірліктің тізіміне енген. Qr коды мен тіркеу номері беріледі. Материал жариялаған соң сертификат тегін бірден беріледі.
Оқу-ағарту министірлігінің ресми жауабы
Сайтқа 5 материал жариялап, тегін АЛҒЫС ХАТ алыңыз!
Қазақстан Республикасының білім беру жүйесін дамытуға қосқан жеке үлесі үшін және де Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық материалыңызбен бөлісіп, белсенді болғаныңыз үшін алғыс білдіреміз!
Сайтқа 25 материал жариялап, тегін ҚҰРМЕТ ГРОМАТАСЫН алыңыз!
Тәуелсіз Қазақстанның білім беру жүйесін дамытуға және білім беру сапасын арттыру мақсатында Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жариялағаны үшін марапатталасыз!
Министірлікпен келісілген курстар тізімі