ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ

Тақырып бойынша 11 материал табылды

ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ

Материал туралы қысқаша түсінік
Перед тем как приступить к изучению признаков параллелограмма, следует напомнить учащимся, что означает слово «признак» и что такое обратная теорема.
Материалдың қысқаша нұсқасы

ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ

Цели: доказать признаки параллелограмма и рассмотреть решение задач.

Ход урока

I. Проверка домашнего задания.

1. Ответить на вопросы учащихся по домашнему заданию.

2. Выполнить задания (устно):

1) На рисунке а) 1 = 4, 2 = 3. является ли четырехугольник АВСD параллелограммом?

2) На рисунке б) 1 = 2 = 3. Докажите, что четырехугольник АВСD – параллелограмм.

3) На рисунке в) ММ || РQ, М = Р. Докажите, что МNPO – параллелограмм.

4) Является ли четырехугольник АВСD, изображенный на рисунке г), параллелограммом, если а) 1 = 70°; 3 = 110°; 2 + 3 = 180°;
б)
1 = 2, 2 ≠ 4?

а) б)

в) г)

3. Анализ самостоятельной работы.

II. Изучение нового материала.

1. Перед тем как приступить к изучению признаков параллелограмма, следует напомнить учащимся, что означает слово «признак» и что такое обратная теорема.

2. Предложить учащимся самим сформулировать теоремы, обратные утверждениям о свойствах параллелограмма.

3. Подчеркнуть, что некоторое утверждение верно, но отсюда еще не следует, что верно и обратное ему утверждение.

4. Доказательство признаков можно провести силами учащихся.

III. Закрепление изученного материала.

Решить задачи №№ 379, 382.

379.

Решение

1) Так как ВK АС и АС, то ВK || DМ.

2) Прямоугольные треугольники АВK и СDМ равны по острому углу и гипотенузе ( ВАK = DСМ как внутренние накрест лежащие при АВ || СD и секущей АС, АВ = по свойству параллелограмма).

3) Тогда ВK = DМ.

4) Четырехугольник ВМDK является параллелограммом, так как
ВK || , ВK = .

382.

Решение

1) По свойству параллелограмма АО = ОС, ВО = ОD.

2) По условию ВВ1 = В1О = ОD1 =
=
D1D и АА1 = А1О = ОС1 = С1С.

3) Четырехугольник А1В1С1D1 – параллелограмм, так как его диагонали пересекаются и точкой пересечения делятся пополам.

IV. Итоги урока.

Если в задаче необходимо доказать, что АВСD – параллелограмм, то применяют один из признаков:

АВ || СD и ВС || СD

АВСD – параллелограмм

АВ || СD и АВ = СD

АВСD – параллелограмм

АВ = СD и АD = ВС

АВСD – параллелограмм

АО = ОС и ВО = ОD

АВСD – параллелограмм

Домашнее задание: вопросы 6–9, с. 114; №№ 380, 373, 377, 384.


Жүктеу
bolisu
Бөлісу
ЖИ арқылы жасау
Файл форматы:
docx
20.01.2019
397
Жүктеу
ЖИ арқылы жасау
Бұл материалды қолданушы жариялаған. Ustaz Tilegi ақпаратты жеткізуші ғана болып табылады. Жарияланған материалдың мазмұны мен авторлық құқық толықтай автордың жауапкершілігінде. Егер материал авторлық құқықты бұзады немесе сайттан алынуы тиіс деп есептесеңіз,
шағым қалдыра аласыз
Қазақстандағы ең үлкен материалдар базасынан іздеу
Сіз үшін 400 000 ұстаздардың еңбегі мен тәжірибесін біріктіріп, ең үлкен материалдар базасын жасадық. Төменде керек материалды іздеп, жүктеп алып сабағыңызға қолдана аласыз
Материал жариялап, аттестацияға 100% жарамды сертификатты тегін алыңыз!
Ustaz tilegi журналы министірліктің тізіміне енген. Qr коды мен тіркеу номері беріледі. Материал жариялаған соң сертификат тегін бірден беріледі.
Оқу-ағарту министірлігінің ресми жауабы
Сайтқа 5 материал жариялап, тегін АЛҒЫС ХАТ алыңыз!
Қазақстан Республикасының білім беру жүйесін дамытуға қосқан жеке үлесі үшін және де Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық материалыңызбен бөлісіп, белсенді болғаныңыз үшін алғыс білдіреміз!
Сайтқа 25 материал жариялап, тегін ҚҰРМЕТ ГРОМАТАСЫН алыңыз!
Тәуелсіз Қазақстанның білім беру жүйесін дамытуға және білім беру сапасын арттыру мақсатында Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жариялағаны үшін марапатталасыз!
Министірлікпен келісілген курстар тізімі