ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ

Тақырып бойынша 11 материал табылды

ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ

Материал туралы қысқаша түсінік
закрепить изученный материал о прямоугольнике, ромбе, квадрате в процессе решения задач.
Материалдың қысқаша нұсқасы

ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ

Цель: закрепить изученный материал о прямоугольнике, ромбе, квадрате в процессе решения задач.

Ход урока

I. Проверка домашнего задания.

Математический диктант

1. I. Является ли прямоугольником параллелограмм, у которого есть прямой угол?

II. Обязательно ли является прямоугольником четырехугольник, у которого есть прямой угол?

2. I. Верно ли, что каждый прямоугольник является параллелограммом?

II. Верно ли, что каждый параллелограмм является прямоугольником?

3. I. Диагонали прямоугольника АЕKМ пересекаются в точке О. Отрезок АО = 3. Найдите длину диагонали ЕМ.

II. Диагонали параллелограмма равны 3 и 5 дм. Является ли этот параллелограмм прямоугольником?

4. I. Диагонали четырехугольника равны. Обязательно ли этот четырехугольник является прямоугольником?

II. Сумма длин диагоналей прямоугольника 13 см. Найдите длину каждой диагонали.

5. I. Периметр ромба равен 12 см. Найдите длины его сторон.

II. Верно ли, что каждый ромб является параллелограммом?

6. I. Верно ли, что каждый параллелограмм является ромбом?

II. Периметр ромба равен 30 см. Найдите его стороны.

7. I. Диагонали ромба делят его на четыре треугольника. Найдите углы каждого треугольника, если один из углов ромба 30°.

II. Ромб АВСD имеет прямой угол. Является ли этот ромб квадратом?

8. I. Две соседние стороны параллелограмма равны и образуют прямой угол. Как называется такой параллелограмм?

II. Диагонали квадрата делят его на четыре треугольника. Найдите углы каждого треугольника.

II. Решение задач. №№ 404, 407 (устно).

412.

1. АВС – прямоугольный и равнобедренный 1 = 4 = 45°.

2. АFE – прямоугольный.

1 = 45° 3 = 45° DВ = DE.

3. DВЕ – прямоугольный.

4 = 45° 2 = 45° AF = FE.

4. СDЕF – квадрат СD = DE =
= EF = CF
.

5. АC = 12 cм. AF = CF = 6 cм.

414 (а) наметить план решения.

III. Самостоятельная работа обучающего характера с проверкой в классе.

Вариант I

1. Найдите углы ромба, если его диагонали составляют с его стороной углы, один из которых на 30° меньше другого.

2. № 413 (б).

Вариант II

1. Угол между диагоналями прямоугольника равен 80°. Найдите углы между диагональю прямоугольника и его сторонами.

2. № 414 (б).

Вариант III
(для более подготовленных учащихся)

1. В ромбе АВСD биссектриса угла ВАС пересекает сторону ВС и диагональ ВD соответственно в точках M и N. Найдите АNВ, если АМС = 120°.

2. Постройте прямоугольник АВСD по стороне АВ и углу АОВ, где О – точка пересечения диагоналей.

Решение на закрытой доске:

Вариант I

1. АВО на 30° больше ВАО.

АВО – прямоугольный;

ВАО = х°, АВО = х + 30°;

ВАО + АВО = 90°;

х + х + 30 = 90°;

х = 30°.

2. Дано:

Построить прямоугольник АВСD.

Решение

1) Разделить АС пополам, отметить середину – точку О.

2) От луча ОС отложить угол, равный углу О.

3) На его другой стороне отложить отрезок ОD = АО.

4) На дополнительном луче к лучу ОD отложить отрезок ОВ = ОD.

5) АВСD – прямоугольник (его диагонали равны и точкой пересечения делятся пополам).

Вариант II

1. ОС = ОВ DОС – равнобедренный ОСD = СDО = 50°.

2. Дано:

Построить: ромб АВСD.

Решение

1) Отложим угол, равный углу В.

2) На сторонах угла отложим отрезки, равные MN, получим точки А и С.

3) Через точки А и С проведем прямые, параллельные прямым АВ и ВС, получим точку D.

4) АВСD – ромб. (Если у параллелограмма смежные стороны равны, то он является ромбом.)

Вариант III

1. ВСО = ВАО.

Пусть ВАN = САМ = х°;

ВСА = 2х°;

АМС: 2х + х + 120° = 180°;

х = 20°.

ВОА: АВО = 90° – 40° = 50°;

ВNА: ВNА = 180° 50° – 20°;

ВNА = 110°.

2. Дано:

Построить: АВСD – прямоугольник.

Решение

1) Построим угол, смежный с углом О и его биссектрису, получаем углы 1 и 2.

2) Откладываем АВ и строим в одну полуплоскость от лучей АВ и ВА углы, равные 1 и 2.

3) Получили АВО.

4) На дополнительных лучах лучам ОВ и ОА откладываем отрезки ОС = АО и ОD = ОВ.

5) АВСD – прямоугольник. (Диагонали его точкой пересечения делятся пополам и равны.)

IV. Итоги урока.

Домашнее задание: вопросы 14–15, с. 115; №№ 406, 411, 413 (а), 415 (б).

По желанию.

АВСD – ромб. DВЕ = 20°

Найти: ВАD.

Решение

1) ВDЕ = 70° из прямоугольного ВЕD.

2) ВАD – равнобедренный.

АВD = АDВ.

3) ВDЕ = АВD = 70° как внутренние накрест лежащие при
АВ || СD и секущей ВD.

4) АВD = АDВ = 70°.

5) ВАD = 180° – 70° – 70° = 40°.

Готовиться к проверочной работе по теме § 1–3 главы V.


Жүктеу
bolisu
Бөлісу
ЖИ арқылы жасау
Файл форматы:
docx
20.01.2019
517
Жүктеу
ЖИ арқылы жасау
Бұл материалды қолданушы жариялаған. Ustaz Tilegi ақпаратты жеткізуші ғана болып табылады. Жарияланған материалдың мазмұны мен авторлық құқық толықтай автордың жауапкершілігінде. Егер материал авторлық құқықты бұзады немесе сайттан алынуы тиіс деп есептесеңіз,
шағым қалдыра аласыз
Қазақстандағы ең үлкен материалдар базасынан іздеу
Сіз үшін 400 000 ұстаздардың еңбегі мен тәжірибесін біріктіріп, ең үлкен материалдар базасын жасадық. Төменде керек материалды іздеп, жүктеп алып сабағыңызға қолдана аласыз
Материал жариялап, аттестацияға 100% жарамды сертификатты тегін алыңыз!
Ustaz tilegi журналы министірліктің тізіміне енген. Qr коды мен тіркеу номері беріледі. Материал жариялаған соң сертификат тегін бірден беріледі.
Оқу-ағарту министірлігінің ресми жауабы
Сайтқа 5 материал жариялап, тегін АЛҒЫС ХАТ алыңыз!
Қазақстан Республикасының білім беру жүйесін дамытуға қосқан жеке үлесі үшін және де Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық материалыңызбен бөлісіп, белсенді болғаныңыз үшін алғыс білдіреміз!
Сайтқа 25 материал жариялап, тегін ҚҰРМЕТ ГРОМАТАСЫН алыңыз!
Тәуелсіз Қазақстанның білім беру жүйесін дамытуға және білім беру сапасын арттыру мақсатында Республика деңгейінде «Ustaz tilegi» Республикалық ғылыми – әдістемелік журналының желілік басылымына өз авторлық жұмысын жариялағаны үшін марапатталасыз!
Министірлікпен келісілген курстар тізімі